Files
FastDeploy/python/fastdeploy/vision/generation/contrib/anemigan.py
chenjian 87bcb5df21 [Model] add style transfer model (#922)
* add style transfer model

* add examples for generation model

* add unit test

* add speed comparison

* add speed comparison

* add variable for constant

* add preprocessor and postprocessor

* add preprocessor and postprocessor

* fix

* fix according to review

Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2023-01-03 10:47:08 +08:00

103 lines
3.8 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
class AnimeGANPreprocessor:
def __init__(self, config_file):
"""Create a preprocessor for AnimeGAN.
"""
self._preprocessor = C.vision.generation.AnimeGANPreprocessor()
def run(self, input_ims):
"""Preprocess input images for AnimeGAN.
:param: input_ims: (list of numpy.ndarray)The input image
:return: list of FDTensor
"""
return self._preprocessor.run(input_ims)
class AnimeGANPostprocessor:
def __init__(self):
"""Create a postprocessor for AnimeGAN.
"""
self._postprocessor = C.vision.generation.AnimeGANPostprocessor()
def run(self, runtime_results):
"""Postprocess the runtime results for AnimeGAN
:param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
:return: results: (list) Final results
"""
return self._postprocessor.run(runtime_results)
class AnimeGAN(FastDeployModel):
def __init__(self,
model_file,
params_file="",
runtime_option=None,
model_format=ModelFormat.PADDLE):
"""Load a AnimeGAN model.
:param model_file: (str)Path of model file, e.g ./model.pdmodel
:param params_file: (str)Path of parameters file, e.g ./model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
:param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
:param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
"""
# call super constructor to initialize self._runtime_option
super(AnimeGAN, self).__init__(runtime_option)
self._model = C.vision.generation.AnimeGAN(
model_file, params_file, self._runtime_option, model_format)
# assert self.initialized to confirm initialization successfully.
assert self.initialized, "AnimeGAN initialize failed."
def predict(self, input_image):
""" Predict the style transfer result for an input image
:param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
:return: style transfer result
"""
return self._model.predict(input_image)
def batch_predict(self, input_images):
""" Predict the style transfer result for multiple input images
:param input_images: (list of numpy.ndarray)The list of input image data, each image is a 3-D array with layout HWC, BGR format
:return: a list of style transfer results
"""
return self._model.batch_predict(input_images)
@property
def preprocessor(self):
"""Get AnimeGANPreprocessor object of the loaded model
:return AnimeGANPreprocessor
"""
return self._model.preprocessor
@property
def postprocessor(self):
"""Get AnimeGANPostprocessor object of the loaded model
:return AnimeGANPostprocessor
"""
return self._model.postprocessor