# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import logging from .... import FastDeployModel, ModelFormat from .... import c_lib_wrap as C class AnimeGANPreprocessor: def __init__(self, config_file): """Create a preprocessor for AnimeGAN. """ self._preprocessor = C.vision.generation.AnimeGANPreprocessor() def run(self, input_ims): """Preprocess input images for AnimeGAN. :param: input_ims: (list of numpy.ndarray)The input image :return: list of FDTensor """ return self._preprocessor.run(input_ims) class AnimeGANPostprocessor: def __init__(self): """Create a postprocessor for AnimeGAN. """ self._postprocessor = C.vision.generation.AnimeGANPostprocessor() def run(self, runtime_results): """Postprocess the runtime results for AnimeGAN :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :return: results: (list) Final results """ return self._postprocessor.run(runtime_results) class AnimeGAN(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.PADDLE): """Load a AnimeGAN model. :param model_file: (str)Path of model file, e.g ./model.pdmodel :param params_file: (str)Path of parameters file, e.g ./model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ # call super constructor to initialize self._runtime_option super(AnimeGAN, self).__init__(runtime_option) self._model = C.vision.generation.AnimeGAN( model_file, params_file, self._runtime_option, model_format) # assert self.initialized to confirm initialization successfully. assert self.initialized, "AnimeGAN initialize failed." def predict(self, input_image): """ Predict the style transfer result for an input image :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: style transfer result """ return self._model.predict(input_image) def batch_predict(self, input_images): """ Predict the style transfer result for multiple input images :param input_images: (list of numpy.ndarray)The list of input image data, each image is a 3-D array with layout HWC, BGR format :return: a list of style transfer results """ return self._model.batch_predict(input_images) @property def preprocessor(self): """Get AnimeGANPreprocessor object of the loaded model :return AnimeGANPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get AnimeGANPostprocessor object of the loaded model :return AnimeGANPostprocessor """ return self._model.postprocessor