Files
FastDeploy/test/plugins/fd_add_dummy_model/__init__.py
lizhenyun01 fe540f6caa [plugin] Custom model_runner/model support (#3186)
* support custom model&&model_runner

* fix merge

* add test && update doc

* fix codestyle

* fix unittest

* load model in rl
2025-08-04 18:52:39 -07:00

53 lines
1.7 KiB
Python

# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddleformers.transformers import PretrainedModel
from fastdeploy import ModelRegistry
from fastdeploy.config import ErnieArchitectures
from fastdeploy.model_executor.models.model_base import ModelForCasualLM
class MyPretrainedModel(PretrainedModel):
@classmethod
def arch_names(cls):
return "MyModelForCasualLM"
class MyModelForCasualLM(ModelForCasualLM):
def __init__(self, fd_config):
"""
Args:
fd_config : Configurations for the LLM model.
"""
super().__init__(fd_config)
print("init done")
@classmethod
def name(cls):
return "MyModelForCasualLM"
def compute_logits(self, logits):
logits[:, 0] += 1.0
return logits
def register():
if "MyModelForCasualLM" not in ModelRegistry.get_supported_archs():
if MyModelForCasualLM.name().startswith("Ernie"):
ErnieArchitectures.register_ernie_model_arch(MyModelForCasualLM)
ModelRegistry.register_model_class(MyModelForCasualLM)
ModelRegistry.register_pretrained_model(MyPretrainedModel)