# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddleformers.transformers import PretrainedModel from fastdeploy import ModelRegistry from fastdeploy.config import ErnieArchitectures from fastdeploy.model_executor.models.model_base import ModelForCasualLM class MyPretrainedModel(PretrainedModel): @classmethod def arch_names(cls): return "MyModelForCasualLM" class MyModelForCasualLM(ModelForCasualLM): def __init__(self, fd_config): """ Args: fd_config : Configurations for the LLM model. """ super().__init__(fd_config) print("init done") @classmethod def name(cls): return "MyModelForCasualLM" def compute_logits(self, logits): logits[:, 0] += 1.0 return logits def register(): if "MyModelForCasualLM" not in ModelRegistry.get_supported_archs(): if MyModelForCasualLM.name().startswith("Ernie"): ErnieArchitectures.register_ernie_model_arch(MyModelForCasualLM) ModelRegistry.register_model_class(MyModelForCasualLM) ModelRegistry.register_pretrained_model(MyPretrainedModel)