mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # PP-TinyPose C++部署示例
 | ||
| 
 | ||
| 本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose在CPU/GPU,以及GPU上通过TensorRT加速部署的`单图单人关键点检测`示例
 | ||
| >> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../det_keypoint_unite/cpp/README.md)
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)  
 | ||
| - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
 | ||
| 
 | ||
| 
 | ||
| 以Linux上推理为例,在本目录执行如下命令即可完成编译测试
 | ||
| 
 | ||
| ```bash
 | ||
| wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-gpu-0.7.0.tgz
 | ||
| tar xvf fastdeploy-linux-x64-gpu-0.7.0.tgz
 | ||
| cd fastdeploy-linux-x64-gpu-0.7.0/examples/vision/keypointdetection/tiny_pose/cpp/
 | ||
| mkdir build
 | ||
| cd build
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.7.0
 | ||
| make -j
 | ||
| 
 | ||
| # 下载PP-TinyPose模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
 | ||
| tar -xvf PP_TinyPose_256x192_infer.tgz
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg
 | ||
| 
 | ||
| 
 | ||
| # CPU推理
 | ||
| ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 0
 | ||
| # GPU推理
 | ||
| ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 1
 | ||
| # GPU上TensorRT推理
 | ||
| ./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg 2
 | ||
| ```
 | ||
| 
 | ||
| 运行完成可视化结果如下图所示
 | ||
| <div  align="center">  
 | ||
| <img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
 | ||
| </div>
 | ||
| 
 | ||
| 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:  
 | ||
| - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
 | ||
| 
 | ||
| ## PP-TinyPose C++接口
 | ||
| 
 | ||
| ### PP-TinyPose类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::keypointdetection::PPTinyPose(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const string& config_file,
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const ModelFormat& model_format = ModelFormat::PADDLE)
 | ||
| ```
 | ||
| 
 | ||
| PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格式。
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径
 | ||
| > * **config_file**(str): 推理部署配置文件
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
 | ||
| 
 | ||
| #### Predict函数
 | ||
| 
 | ||
| > ```c++
 | ||
| > PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测接口,输入图像直接输出关键点检测结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **im**: 输入图像,注意需为HWC,BGR格式
 | ||
| > > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| ### 类成员属性
 | ||
| #### 后处理参数
 | ||
| > > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
 | ||
| 
 | ||
| - [模型介绍](../../)
 | ||
| - [Python部署](../python)
 | ||
| - [视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
 | 
