mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-11-01 04:12:58 +08:00 
			
		
		
		
	 7150e6405c
			
		
	
	7150e6405c
	
	
	
		
			
			* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note * add fsanet * fixed bug * update readme * fixed for ci * deal with comments * deal with comments * deal with comments Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
		
			
				
	
	
		
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # FSANet Python部署示例
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)  
 | ||
| - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
 | ||
| 
 | ||
| 本目录下提供`infer.py`快速完成FSANet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例,保证 FastDeploy 版本 >= 0.6.0 支持FSANet模型。执行如下脚本即可完成
 | ||
| 
 | ||
| ```bash
 | ||
| #下载部署示例代码
 | ||
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | ||
| cd FastDeploy/examples/vision/headpose/fsanet/python
 | ||
| 
 | ||
| # 下载FSANet模型文件和测试图片
 | ||
| ## 原版ONNX模型
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png
 | ||
| # CPU推理
 | ||
| python infer.py --model fsanet-var.onnx --image headpose_input.png --device cpu
 | ||
| # GPU推理
 | ||
| python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu
 | ||
| # TRT推理
 | ||
| python infer.py --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt
 | ||
| ```
 | ||
| 
 | ||
| 运行完成可视化结果如下图所示
 | ||
| 
 | ||
| <div width="520">
 | ||
| <img width="500" height="514" float="left" src="https://user-images.githubusercontent.com/19977378/198279932-3eee424e-98a2-4249-bdeb-0f79127cbc9d.png">
 | ||
| </div>
 | ||
| 
 | ||
| ## FSANet Python接口
 | ||
| 
 | ||
| ```python
 | ||
| fd.vision.headpose.FSANet(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
 | ||
| ```
 | ||
| 
 | ||
| FSANet 模型加载和初始化,其中model_file为导出的ONNX模型格式
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(ModelFormat): 模型格式,默认为ONNX
 | ||
| ### predict函数
 | ||
| 
 | ||
| > ```python
 | ||
| > FSANet.predict(input_image)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测结口,输入图像直接输出头部姿态预测结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
 | ||
| > **返回**
 | ||
| >
 | ||
| > > 返回`fastdeploy.vision.HeadPoseResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| ## 其它文档
 | ||
| 
 | ||
| - [FSANet 模型介绍](..)
 | ||
| - [FSANet C++部署](../cpp)
 | ||
| - [模型预测结果说明](../../../../../docs/api/vision_results/)
 | ||
| - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
 |