mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-07 17:41:52 +08:00

* [FlyCV] Bump up FlyCV -> official release 1.0.0 * add seg models for XPU * add ocr model for XPU * add matting * add matting python * fix infer.cc * add keypointdetection support for XPU * Add adaface support for XPU * add ernie-3.0 * fix doc Co-authored-by: DefTruth <qiustudent_r@163.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
192 lines
6.9 KiB
C++
Executable File
192 lines
6.9 KiB
C++
Executable File
/***************************************************************************
|
|
*
|
|
* Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved
|
|
*
|
|
**************************************************************************/
|
|
|
|
/**
|
|
* @author Baidu
|
|
* @brief demo_image_inference
|
|
*
|
|
**/
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void CpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|
const std::vector<std::string> &image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
cv::Mat face0 = cv::imread(image_file[0]);
|
|
cv::Mat face1 = cv::imread(image_file[1]);
|
|
cv::Mat face2 = cv::imread(image_file[2]);
|
|
|
|
fastdeploy::vision::FaceRecognitionResult res0;
|
|
fastdeploy::vision::FaceRecognitionResult res1;
|
|
fastdeploy::vision::FaceRecognitionResult res2;
|
|
|
|
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
|
(!model.Predict(&face2, &res2))) {
|
|
std::cerr << "Prediction Failed." << std::endl;
|
|
}
|
|
|
|
std::cout << "Prediction Done!" << std::endl;
|
|
|
|
std::cout << "--- [Face 0]:" << res0.Str();
|
|
std::cout << "--- [Face 1]:" << res1.Str();
|
|
std::cout << "--- [Face 2]:" << res2.Str();
|
|
|
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res1.embedding, model.l2_normalize);
|
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res2.embedding, model.l2_normalize);
|
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
|
}
|
|
|
|
void XpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|
const std::vector<std::string> &image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseXpu();
|
|
auto model = fastdeploy::vision::faceid::AdaFace(model_file, params_file);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
cv::Mat face0 = cv::imread(image_file[0]);
|
|
cv::Mat face1 = cv::imread(image_file[1]);
|
|
cv::Mat face2 = cv::imread(image_file[2]);
|
|
|
|
fastdeploy::vision::FaceRecognitionResult res0;
|
|
fastdeploy::vision::FaceRecognitionResult res1;
|
|
fastdeploy::vision::FaceRecognitionResult res2;
|
|
|
|
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
|
(!model.Predict(&face2, &res2))) {
|
|
std::cerr << "Prediction Failed." << std::endl;
|
|
}
|
|
|
|
std::cout << "Prediction Done!" << std::endl;
|
|
|
|
std::cout << "--- [Face 0]:" << res0.Str();
|
|
std::cout << "--- [Face 1]:" << res1.Str();
|
|
std::cout << "--- [Face 2]:" << res2.Str();
|
|
|
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res1.embedding, model.l2_normalize);
|
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res2.embedding, model.l2_normalize);
|
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
|
}
|
|
|
|
void GpuInfer(const std::string &model_file, const std::string ¶ms_file,
|
|
const std::vector<std::string> &image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
auto model =
|
|
fastdeploy::vision::faceid::AdaFace(model_file, params_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
cv::Mat face0 = cv::imread(image_file[0]);
|
|
cv::Mat face1 = cv::imread(image_file[1]);
|
|
cv::Mat face2 = cv::imread(image_file[2]);
|
|
|
|
fastdeploy::vision::FaceRecognitionResult res0;
|
|
fastdeploy::vision::FaceRecognitionResult res1;
|
|
fastdeploy::vision::FaceRecognitionResult res2;
|
|
|
|
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
|
(!model.Predict(&face2, &res2))) {
|
|
std::cerr << "Prediction Failed." << std::endl;
|
|
}
|
|
|
|
std::cout << "Prediction Done!" << std::endl;
|
|
|
|
std::cout << "--- [Face 0]:" << res0.Str();
|
|
std::cout << "--- [Face 1]:" << res1.Str();
|
|
std::cout << "--- [Face 2]:" << res2.Str();
|
|
|
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res1.embedding, model.l2_normalize);
|
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res2.embedding, model.l2_normalize);
|
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
|
}
|
|
|
|
void TrtInfer(const std::string &model_file, const std::string ¶ms_file,
|
|
const std::vector<std::string> &image_file) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
option.UseGpu();
|
|
option.UseTrtBackend();
|
|
option.SetTrtInputShape("data", {1, 3, 112, 112});
|
|
auto model =
|
|
fastdeploy::vision::faceid::AdaFace(model_file, params_file, option);
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
|
|
cv::Mat face0 = cv::imread(image_file[0]);
|
|
cv::Mat face1 = cv::imread(image_file[1]);
|
|
cv::Mat face2 = cv::imread(image_file[2]);
|
|
|
|
fastdeploy::vision::FaceRecognitionResult res0;
|
|
fastdeploy::vision::FaceRecognitionResult res1;
|
|
fastdeploy::vision::FaceRecognitionResult res2;
|
|
|
|
if ((!model.Predict(&face0, &res0)) || (!model.Predict(&face1, &res1)) ||
|
|
(!model.Predict(&face2, &res2))) {
|
|
std::cerr << "Prediction Failed." << std::endl;
|
|
}
|
|
|
|
std::cout << "Prediction Done!" << std::endl;
|
|
|
|
std::cout << "--- [Face 0]:" << res0.Str();
|
|
std::cout << "--- [Face 1]:" << res1.Str();
|
|
std::cout << "--- [Face 2]:" << res2.Str();
|
|
|
|
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res1.embedding, model.l2_normalize);
|
|
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
|
|
res0.embedding, res2.embedding, model.l2_normalize);
|
|
std::cout << "Detect Done! Cosine 01: " << cosine01
|
|
<< ", Cosine 02:" << cosine02 << std::endl;
|
|
}
|
|
|
|
int main(int argc, char *argv[]) {
|
|
if (argc < 7) {
|
|
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
|
"e.g ./infer_demo mobilefacenet_adaface.pdmodel "
|
|
"mobilefacenet_adaface.pdiparams "
|
|
"test_lite_focal_AdaFace_0.JPG test_lite_focal_AdaFace_1.JPG "
|
|
"test_lite_focal_AdaFace_2.JPG 0"
|
|
<< std::endl;
|
|
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
|
|
"with gpu; 2: run with gpu and use tensorrt backend; 3: run with xpu."
|
|
<< std::endl;
|
|
return -1;
|
|
}
|
|
|
|
std::vector<std::string> image_files = {argv[3], argv[4], argv[5]};
|
|
if (std::atoi(argv[6]) == 0) {
|
|
std::cout << "use CpuInfer" << std::endl;
|
|
CpuInfer(argv[1], argv[2], image_files);
|
|
} else if (std::atoi(argv[6]) == 1) {
|
|
GpuInfer(argv[1], argv[2], image_files);
|
|
} else if (std::atoi(argv[6]) == 2) {
|
|
TrtInfer(argv[1], argv[2], image_files);
|
|
} else if (std::atoi(argv[6]) == 3) {
|
|
CpuInfer(argv[1], argv[2], image_files);
|
|
}
|
|
return 0;
|
|
}
|