Files
FastDeploy/examples/vision/faceid/adaface/cpp
yeliang2258 7b15f72516 [Backend] Add OCR、Seg、 KeypointDetection、Matting、 ernie-3.0 and adaface models for XPU Deploy (#960)
* [FlyCV] Bump up FlyCV -> official release 1.0.0

* add seg models for XPU

* add ocr model for XPU

* add matting

* add matting python

* fix infer.cc

* add keypointdetection support for XPU

* Add adaface support for XPU

* add ernie-3.0

* fix doc

Co-authored-by: DefTruth <qiustudent_r@163.com>
Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
2022-12-26 15:02:58 +08:00
..

AdaFace C++部署示例

本目录下提供infer_xxx.py快速完成AdaFace模型在CPU/GPU以及GPU上通过TensorRT加速部署的示例。

以AdaFace为例提供infer.cc快速完成AdaFace在CPU/GPU以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

以Linux上CPU推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

#下载测试图片
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_0.JPG
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_1.JPG
wget https://bj.bcebos.com/paddlehub/test_samples/test_lite_focal_arcface_2.JPG

# 如果为Paddle模型运行以下代码
wget https://bj.bcebos.com/paddlehub/fastdeploy/mobilefacenet_adaface.tgz
tar zxvf mobilefacenet_adaface.tgz -C ./
# CPU推理
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
              mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
              test_lite_focal_arcface_0.JPG \
              test_lite_focal_arcface_1.JPG \
              test_lite_focal_arcface_2.JPG \
              0

# GPU推理
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
              mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
              test_lite_focal_arcface_0.JPG \
              test_lite_focal_arcface_1.JPG \
              test_lite_focal_arcface_2.JPG \
              1

# GPU上TensorRT推理
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
              mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
              test_lite_focal_arcface_0.JPG \
              test_lite_focal_arcface_1.JPG \
              test_lite_focal_arcface_2.JPG \
              2

# XPU推理
./infer_demo mobilefacenet_adaface/mobilefacenet_adaface.pdmodel \
              mobilefacenet_adaface/mobilefacenet_adaface.pdiparams \
              test_lite_focal_arcface_0.JPG \
              test_lite_focal_arcface_1.JPG \
              test_lite_focal_arcface_2.JPG \
              3

运行完成可视化结果如下图所示

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

AdaFace C++接口

AdaFace类

fastdeploy::vision::faceid::AdaFace(
        const string& model_file,
        const string& params_file = "",
        const RuntimeOption& runtime_option = RuntimeOption(),
        const ModelFormat& model_format = ModelFormat::PADDLE)

AdaFace模型加载和初始化如果使用PaddleInference推理model_file和params_file为PaddleInference模型格式; 如果使用ONNXRuntime推理model_file为ONNX模型格式,params_file为空。

Predict函数

AdaFace::Predict(cv::Mat* im, FaceRecognitionResult* result)

模型预测接口,输入图像直接输出检测结果。

参数

  • im: 输入图像注意需为HWCBGR格式
  • result: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考视觉模型预测结果

类成员变量

预处理参数

用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果

  • size(vector<int>): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112]
  • alpha(vector<float>): 预处理归一化的alpha值计算公式为x'=x*alpha+betaalpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
  • beta(vector<float>): 预处理归一化的beta值计算公式为x'=x*alpha+betabeta默认为[-1.f, -1.f, -1.f]
  • swap_rb(bool): 预处理是否将BGR转换成RGB默认true
  • l2_normalize(bool): 输出人脸向量之前是否执行l2归一化默认false