Files
FastDeploy/docs/en/quick_start/models/python.md
charl-u 02eab973ce [Doc]Add English version of documents in docs/cn and api/vision_results (#931)
* 第一次提交

* 补充一处漏翻译

* deleted:    docs/en/quantize.md

* Update one translation

* Update en version

* Update one translation in code

* Standardize one writing

* Standardize one writing

* Update some en version

* Fix a grammer problem

* Update en version for api/vision result

* Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop

* Checkout the link in README in vision_results/ to the en documents

* Modify a title

* Add link to serving/docs/

* Finish translation of demo.md
2022-12-22 18:15:01 +08:00

57 lines
1.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

English | [中文](../../../cn/quick_start/models/python.md)
# Python Deployment
Make sure that FastDeploy is installed in the development environment. Refer to [FastDeploy Installation](../../build_and_install/) to install the pre-built FastDeploy, or build and install according to your own needs.
This document uses the PaddleDetection target detection model PPYOLOE as an example to show an inference example on the CPU.
## 1. Get the Model and Test Image
``` python
import fastdeploy as fd
model_url = "https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz"
image_url = "https://bj.bcebos.com/fastdeploy/tests/test_det.jpg"
fd.download_and_decompress(model_url, path=".")
fd.download(image_url, path=".")
```
## 2. Load Model
- More examples of models can be found in[FastDeploy/examples](https://github.com/PaddlePaddle/FastDeploy/tree/develop/examples)
``` python
model_file = "ppyoloe_crn_l_300e_coco/model.pdmodel"
params_file = "ppyoloe_crn_l_300e_coco/model.pdiparams"
infer_cfg_file = "ppyoloe_crn_l_300e_coco/infer_cfg.yml"
model = fd.vision.detection.PPYOLOE(model_file, params_file, infer_cfg_file)
```
## 3. Get Prediction for Image Object Detection
``` python
import cv2
im = cv2.imread("000000014439.jpg")
result = model.predict(im)
print(result)
```
## 4. Visualize image prediction results
``` python
vis_im = fd.vision.visualize.vis_detection(im, result, score_threshold=0.5)
cv2.imwrite("vis_image.jpg", vis_im)
```
After the visualization is executed, open `vis_image.jpg` and the visualization effect is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>
## other documents
- [Switch model inference hardware and backend](../../faq/how_to_change_backend.md)