mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
76 lines
5.1 KiB
Markdown
Executable File
76 lines
5.1 KiB
Markdown
Executable File
# PaddleClas CPU-GPU Python部署示例
|
||
本目录下提供`infer_ppshituv2_det.py`快速完成PP-ShiTuV2在CPU/GPU上部署的示例.
|
||
|
||
## 1. 说明
|
||
PP-ShiTuV2支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署图像分类模型
|
||
|
||
## 2. 部署环境准备
|
||
在部署前,需确认软硬件环境,同时下载预编译部署库,参考[FastDeploy安装文档](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install#FastDeploy预编译库安装)安装FastDeploy预编译库.
|
||
|
||
## 3. 运行部署示例
|
||
```bash
|
||
# 安装FastDpeloy python包(详细文档请参考`部署环境准备`)
|
||
pip install fastdeploy-gpu-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
|
||
conda config --add channels conda-forge && conda install cudatoolkit=11.2 cudnn=8.2
|
||
|
||
# 下载部署示例代码
|
||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||
cd FastDeploy/examples/vision/classification/ppshitu/cpu-gpu/python
|
||
|
||
# 下载模型文件和测试图片
|
||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar && tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
|
||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0_infer.tar && tar -xf general_PPLCNetV2_base_pretrained_v1.0_infer.tar
|
||
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v2.0.tar && tar -xf drink_dataset_v2.0.tar
|
||
|
||
# 在CPU上使用Paddle Inference推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device cpu --backend paddle
|
||
# 在CPU上使用OenVINO推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device cpu --backend openvino
|
||
# 在CPU上使用ONNX Runtime推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device cpu --backend ort
|
||
# 在CPU上使用Paddle Lite推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device cpu --backend pplite
|
||
# 在GPU上使用Paddle Inference推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device gpu --backend paddle
|
||
# 在GPU上使用Paddle TensorRT推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device gpu --backend pptrt
|
||
# 在GPU上使用ONNX Runtime推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device gpu --backend ort
|
||
# 在GPU上使用Nvidia TensorRT推理
|
||
python infer_ppshituv2_det.py --model picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer --image drink_dataset_v2.0/test_images/100.jpeg --device gpu --backend trt
|
||
```
|
||
|
||
## 4. 部署示例选项说明
|
||
|
||
|参数|含义|默认值
|
||
|---|---|---|
|
||
|--model|指定模型文件夹所在的路径|None|
|
||
|--image|指定测试图片所在的路径|None|
|
||
|--device|指定即将运行的硬件类型,支持的值为`[cpu, gpu]`,当设置为cpu时,可运行在x86 cpu/arm cpu等cpu上|cpu|
|
||
|--device_id|使用gpu时, 指定设备号|0|
|
||
|--backend|部署模型时使用的后端, 支持的值为`[paddle,pptrt,pplite,ort,openvino,trt]` |openvino|
|
||
|--topk|返回的前topk准确率, 支持的为`1,5` |1|
|
||
|
||
关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||
|
||
## 5. 更多指南
|
||
- [PaddleClas系列 Python API查阅](https://www.paddlepaddle.org.cn/fastdeploy-api-doc/python/html/image_classification.html)
|
||
- [PaddleClas C++ 部署](../cpp)
|
||
- [PaddleClas C 部署](../c)
|
||
- [PaddleClas C# 部署](../csharp)
|
||
|
||
## 6. 常见问题
|
||
- PaddleClas能在FastDeploy支持的多种后端上推理,支持情况如下表所示, 如何切换后端, 详见文档[如何切换模型推理后端引擎](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/faq/how_to_change_backend.md)
|
||
|
||
|硬件类型|支持的后端|
|
||
|:---:|:---:|
|
||
|X86 CPU| Paddle Inference, ONNX Runtime, OpenVINO |
|
||
|ARM CPU| Paddle Lite |
|
||
|飞腾 CPU| ONNX Runtime |
|
||
|NVIDIA GPU| Paddle Inference, ONNX Runtime, TensorRT |
|
||
|
||
- [Intel GPU(独立显卡/集成显卡)的使用](https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/intel_gpu/README.md)
|
||
- [编译CPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/cpu.md)
|
||
- [编译GPU部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/gpu.md)
|
||
- [编译Jetson部署库](https://github.com/PaddlePaddle/FastDeploy/blob/develop/docs/cn/build_and_install/jetson.md)
|