Files
FastDeploy/fastdeploy/vision/facedet/contrib/centerface/postprocessor.cc

138 lines
5.3 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/contrib/centerface/postprocessor.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
CenterFacePostprocessor::CenterFacePostprocessor() {
conf_threshold_ = 0.5;
nms_threshold_ = 0.3;
landmarks_per_face_ = 5;
}
bool CenterFacePostprocessor::Run(const std::vector<FDTensor>& infer_result,
std::vector<FaceDetectionResult>* results,
const std::vector<std::map<std::string, std::array<float, 2>>>& ims_info) {
int batch = infer_result[0].shape[0];
results->resize(batch);
FDTensor heatmap = infer_result[0]; //(1 1 160 160)
FDTensor scales = infer_result[1]; //(1 2 160 160)
FDTensor offsets = infer_result[2]; //(1 2 160 160)
FDTensor landmarks = infer_result[3]; //(1 10 160 160)
for (size_t bs = 0; bs < batch; ++bs) {
(*results)[bs].Clear();
(*results)[bs].landmarks_per_face = landmarks_per_face_;
(*results)[bs].Reserve(heatmap.shape[2]);
if (infer_result[0].dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
int fea_h = heatmap.shape[2];
int fea_w = heatmap.shape[3];
int spacial_size = fea_w * fea_h;
float *heatmap_out = static_cast<float*>(heatmap.Data());
float *scale0 = static_cast<float*>(scales.Data());
float *scale1 = scale0 + spacial_size;
float *offset0 = static_cast<float*>(offsets.Data());
float *offset1 = offset0 + spacial_size;
float confidence = 0.f;
std::vector<int> ids;
for (int i = 0; i < fea_h; i++) {
for (int j = 0; j < fea_w; j++) {
if (heatmap_out[i*fea_w + j] > conf_threshold_) {
ids.push_back(i);
ids.push_back(j);
}
}
}
auto iter_out = ims_info[bs].find("output_shape");
auto iter_ipt = ims_info[bs].find("input_shape");
FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale_h = ipt_h / out_h;
float scale_w = ipt_w / out_w;
for (int i = 0; i < ids.size() / 2; i++) {
int id_h = ids[2 * i];
int id_w = ids[2 * i + 1];
int index = id_h * fea_w + id_w;
confidence = heatmap_out[index];
float s0 = std::exp(scale0[index]) * 4;
float s1 = std::exp(scale1[index]) * 4;
float o0 = offset0[index];
float o1 = offset1[index];
float x1 = (id_w + o1 + 0.5) * 4 - s1 / 2 > 0.f ? (id_w + o1 + 0.5) * 4 - s1 / 2 : 0;
float y1 =(id_h + o0 + 0.5) * 4 - s0 / 2 > 0 ? (id_h + o0 + 0.5) * 4 - s0 / 2 : 0;
float x2 = 0, y2 = 0;
x1 = x1 < (float)out_w ? x1 : (float)out_w;
y1 = y1 < (float)out_h ? y1 : (float)out_h;
x2 = x1 + s1 < (float)out_w ? x1 + s1 : (float)out_w;
y2 = y1 + s0 < (float)out_h ? y1 + s0 : (float)out_h;
(*results)[bs].boxes.emplace_back(std::array<float, 4>{x1, y1, x2, y2});
(*results)[bs].scores.push_back(confidence);
// decode landmarks (default 5 landmarks)
if (landmarks_per_face_ > 0) {
// reference: utils/box_utils.py#L241
for (size_t j = 0; j < landmarks_per_face_; j++) {
float *xmap = (float*)landmarks.Data() + (2 * j + 1) * spacial_size;
float *ymap = (float*)landmarks.Data() + (2 * j) * spacial_size;
float lx = (x1 + xmap[index] * s1) * scale_w;
float ly = (y1 + ymap[index] * s0) * scale_h;
(*results)[bs].landmarks.emplace_back(std::array<float, 2>{lx, ly});
}
}
}
if ((*results)[bs].boxes.size() == 0) {
continue;
}
utils::NMS(&((*results)[bs]), nms_threshold_);
for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) {
(*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0] * scale_w, 0.0f);
(*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1] * scale_h, 0.0f);
(*results)[bs].boxes[i][2] = std::max((*results)[bs].boxes[i][2] * scale_w, 0.0f);
(*results)[bs].boxes[i][3] = std::max((*results)[bs].boxes[i][3] * scale_h, 0.0f);
(*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f);
(*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f);
(*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f);
(*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f);
}
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy