// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/facedet/contrib/centerface/postprocessor.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace facedet { CenterFacePostprocessor::CenterFacePostprocessor() { conf_threshold_ = 0.5; nms_threshold_ = 0.3; landmarks_per_face_ = 5; } bool CenterFacePostprocessor::Run(const std::vector& infer_result, std::vector* results, const std::vector>>& ims_info) { int batch = infer_result[0].shape[0]; results->resize(batch); FDTensor heatmap = infer_result[0]; //(1 1 160 160) FDTensor scales = infer_result[1]; //(1 2 160 160) FDTensor offsets = infer_result[2]; //(1 2 160 160) FDTensor landmarks = infer_result[3]; //(1 10 160 160) for (size_t bs = 0; bs < batch; ++bs) { (*results)[bs].Clear(); (*results)[bs].landmarks_per_face = landmarks_per_face_; (*results)[bs].Reserve(heatmap.shape[2]); if (infer_result[0].dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } int fea_h = heatmap.shape[2]; int fea_w = heatmap.shape[3]; int spacial_size = fea_w * fea_h; float *heatmap_out = static_cast(heatmap.Data()); float *scale0 = static_cast(scales.Data()); float *scale1 = scale0 + spacial_size; float *offset0 = static_cast(offsets.Data()); float *offset1 = offset0 + spacial_size; float confidence = 0.f; std::vector ids; for (int i = 0; i < fea_h; i++) { for (int j = 0; j < fea_w; j++) { if (heatmap_out[i*fea_w + j] > conf_threshold_) { ids.push_back(i); ids.push_back(j); } } } auto iter_out = ims_info[bs].find("output_shape"); auto iter_ipt = ims_info[bs].find("input_shape"); FDASSERT(iter_out != ims_info[bs].end() && iter_ipt != ims_info[bs].end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float scale_h = ipt_h / out_h; float scale_w = ipt_w / out_w; for (int i = 0; i < ids.size() / 2; i++) { int id_h = ids[2 * i]; int id_w = ids[2 * i + 1]; int index = id_h * fea_w + id_w; confidence = heatmap_out[index]; float s0 = std::exp(scale0[index]) * 4; float s1 = std::exp(scale1[index]) * 4; float o0 = offset0[index]; float o1 = offset1[index]; float x1 = (id_w + o1 + 0.5) * 4 - s1 / 2 > 0.f ? (id_w + o1 + 0.5) * 4 - s1 / 2 : 0; float y1 =(id_h + o0 + 0.5) * 4 - s0 / 2 > 0 ? (id_h + o0 + 0.5) * 4 - s0 / 2 : 0; float x2 = 0, y2 = 0; x1 = x1 < (float)out_w ? x1 : (float)out_w; y1 = y1 < (float)out_h ? y1 : (float)out_h; x2 = x1 + s1 < (float)out_w ? x1 + s1 : (float)out_w; y2 = y1 + s0 < (float)out_h ? y1 + s0 : (float)out_h; (*results)[bs].boxes.emplace_back(std::array{x1, y1, x2, y2}); (*results)[bs].scores.push_back(confidence); // decode landmarks (default 5 landmarks) if (landmarks_per_face_ > 0) { // reference: utils/box_utils.py#L241 for (size_t j = 0; j < landmarks_per_face_; j++) { float *xmap = (float*)landmarks.Data() + (2 * j + 1) * spacial_size; float *ymap = (float*)landmarks.Data() + (2 * j) * spacial_size; float lx = (x1 + xmap[index] * s1) * scale_w; float ly = (y1 + ymap[index] * s0) * scale_h; (*results)[bs].landmarks.emplace_back(std::array{lx, ly}); } } } if ((*results)[bs].boxes.size() == 0) { continue; } utils::NMS(&((*results)[bs]), nms_threshold_); for (size_t i = 0; i < (*results)[bs].boxes.size(); ++i) { (*results)[bs].boxes[i][0] = std::max((*results)[bs].boxes[i][0] * scale_w, 0.0f); (*results)[bs].boxes[i][1] = std::max((*results)[bs].boxes[i][1] * scale_h, 0.0f); (*results)[bs].boxes[i][2] = std::max((*results)[bs].boxes[i][2] * scale_w, 0.0f); (*results)[bs].boxes[i][3] = std::max((*results)[bs].boxes[i][3] * scale_h, 0.0f); (*results)[bs].boxes[i][0] = std::min((*results)[bs].boxes[i][0], ipt_w - 1.0f); (*results)[bs].boxes[i][1] = std::min((*results)[bs].boxes[i][1], ipt_h - 1.0f); (*results)[bs].boxes[i][2] = std::min((*results)[bs].boxes[i][2], ipt_w - 1.0f); (*results)[bs].boxes[i][3] = std::min((*results)[bs].boxes[i][3], ipt_h - 1.0f); } } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy