mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 04:44:00 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
59 lines
1.9 KiB
C++
59 lines
1.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_postprocessor.h"
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include "fastdeploy/vision/utils/utils.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
namespace classification {
|
|
|
|
bool PPShiTuV2RecognizerPostprocessor::Run(
|
|
const std::vector<FDTensor>& tensors,
|
|
std::vector<ClassifyResult>* results) {
|
|
int batch = tensors[0].shape[0]; // e.g [batch, 512]
|
|
int num_feature = tensors[0].shape[1];
|
|
const float* tensor_data = reinterpret_cast<const float*>(tensors[0].Data());
|
|
|
|
results->resize(batch);
|
|
|
|
// post processing per batch=1
|
|
for (int i = 0; i < batch; ++i) {
|
|
(*results)[i].feature.resize(num_feature);
|
|
const float* tensor_data_i_start = tensor_data + i * num_feature;
|
|
std::memcpy((*results)[i].feature.data(), tensor_data_i_start,
|
|
num_feature * sizeof(float));
|
|
if (feature_norm_) {
|
|
FeatureNorm((*results)[i].feature);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void PPShiTuV2RecognizerPostprocessor::FeatureNorm(
|
|
std::vector<float>& feature) {
|
|
float feature_sqrt = std::sqrt(std::inner_product(
|
|
feature.begin(), feature.end(), feature.begin(), 0.0f));
|
|
for (int i = 0; i < feature.size(); ++i) {
|
|
feature[i] /= feature_sqrt;
|
|
}
|
|
}
|
|
|
|
} // namespace classification
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|