// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/classification/ppshitu/ppshituv2_rec_postprocessor.h" #include #include #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace classification { bool PPShiTuV2RecognizerPostprocessor::Run( const std::vector& tensors, std::vector* results) { int batch = tensors[0].shape[0]; // e.g [batch, 512] int num_feature = tensors[0].shape[1]; const float* tensor_data = reinterpret_cast(tensors[0].Data()); results->resize(batch); // post processing per batch=1 for (int i = 0; i < batch; ++i) { (*results)[i].feature.resize(num_feature); const float* tensor_data_i_start = tensor_data + i * num_feature; std::memcpy((*results)[i].feature.data(), tensor_data_i_start, num_feature * sizeof(float)); if (feature_norm_) { FeatureNorm((*results)[i].feature); } } return true; } void PPShiTuV2RecognizerPostprocessor::FeatureNorm( std::vector& feature) { float feature_sqrt = std::sqrt(std::inner_product( feature.begin(), feature.end(), feature.begin(), 0.0f)); for (int i = 0; i < feature.size(); ++i) { feature[i] /= feature_sqrt; } } } // namespace classification } // namespace vision } // namespace fastdeploy