mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-14 12:55:06 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples * Add english version of documents in examples * Add english version of documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples * Update some documents in examples
63 lines
2.7 KiB
Markdown
63 lines
2.7 KiB
Markdown
English | [简体中文](README_CN.md)
|
|
# EDVR Python Deployment Example
|
|
|
|
Before deployment, two steps require confirmation
|
|
|
|
- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
|
|
|
|
This directory provides examples that `infer.py` fast finishes the deployment of EDVR on CPU/GPU and GPU accelerated by TensorRT. The script is as follows
|
|
|
|
```bash
|
|
# Download deployment example code
|
|
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
|
cd FastDeploy/examples/vision/sr/edvr/python
|
|
|
|
# Download VSR model files and test videos
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/EDVR_M_wo_tsa_SRx4.tar
|
|
tar -xvf EDVR_M_wo_tsa_SRx4.tar
|
|
wget https://bj.bcebos.com/paddlehub/fastdeploy/vsr_src.mp4
|
|
# CPU inference
|
|
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device cpu
|
|
# GPU inference
|
|
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device gpu
|
|
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
|
|
python infer.py --model EDVR_M_wo_tsa_SRx4 --video vsr_src.mp4 --frame_num 5 --device gpu --use_trt True
|
|
```
|
|
|
|
## EDVR Python Interface
|
|
|
|
```python
|
|
fd.vision.sr.EDVR(model_file, params_file, runtime_option=None, model_format=ModelFormat.PADDLE)
|
|
```
|
|
|
|
EDVR model loading and initialization, among which model_file and params_file are the Paddle inference files exported from the training model. Refer to [Model Export](https://github.com/PaddlePaddle/PaddleGAN/blob/develop/docs/zh_CN/tutorials/video_super_resolution.md) for more information
|
|
|
|
**Parameter**
|
|
|
|
> * **model_file**(str): Model file path
|
|
> * **params_file**(str): Parameter file path
|
|
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default, which is the default configuration
|
|
> * **model_format**(ModelFormat): Model format. Paddle format by default
|
|
|
|
### predict function
|
|
|
|
> ```python
|
|
> EDVR.predict(frames)
|
|
> ```
|
|
>
|
|
> Model prediction interface. Input images and output detection results.
|
|
>
|
|
> **Parameter**
|
|
>
|
|
> > * **frames**(list[np.ndarray]): Input data in HWC or BGR format. Frames are video frame sequences.
|
|
|
|
> **Return** list[np.ndarray] is the video frame sequence after SR
|
|
|
|
|
|
## Other Documents
|
|
|
|
- [EDVR Model Description](..)
|
|
- [EDVR C++ Deployment](../cpp)
|
|
- [How to switch the model inference backend engine](../../../../../docs/en/faq/how_to_change_backend.md)
|