mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * add rvm support * support rvm model * add rvm demo * fixed bugs * add rvm readme * add TRT support * add trt support * add rvm test * add EXPORT.md * rename export.md * rm poros doxyen * deal with comments * deal with comments * add rvm video_mode note * add fsanet * fixed bug * update readme * fixed for ci * deal with comments * deal with comments * deal with comments Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: DefTruth <31974251+DefTruth@users.noreply.github.com>
75 lines
3.3 KiB
Markdown
75 lines
3.3 KiB
Markdown
# FSANet C++部署示例
|
||
|
||
本目录下提供`infer.cc`快速完成FSANet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
|
||
|
||
在部署前,需确认以下两个步骤
|
||
|
||
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
|
||
|
||
以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试,保证 FastDeploy 版本0.6.0以上(x.x.x >= 0.6.0)支持FSANet模型
|
||
|
||
```bash
|
||
mkdir build
|
||
cd build
|
||
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
|
||
tar xvf fastdeploy-linux-x64-x.x.x.tgz
|
||
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
|
||
make -j
|
||
|
||
#下载官方转换好的 FSANet 模型文件和测试图片
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/fsanet-var.onnx
|
||
wget https://bj.bcebos.com/paddlehub/fastdeploy/headpose_input.png
|
||
# CPU推理
|
||
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device cpu
|
||
# GPU推理
|
||
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device gpu
|
||
# GPU上TensorRT推理
|
||
./infer_demo --model fsanet-var.onnx --image headpose_input.png --device gpu --backend trt
|
||
```
|
||
|
||
运行完成可视化结果如下图所示
|
||
|
||
<div width="520">
|
||
<img width="500" height="514" float="left" src="https://user-images.githubusercontent.com/19977378/198279932-3eee424e-98a2-4249-bdeb-0f79127cbc9d.png">
|
||
</div>
|
||
|
||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
|
||
|
||
## FSANet C++接口
|
||
|
||
### FSANet 类
|
||
|
||
```c++
|
||
fastdeploy::vision::headpose::FSANet(
|
||
const string& model_file,
|
||
const string& params_file = "",
|
||
const RuntimeOption& runtime_option = RuntimeOption(),
|
||
const ModelFormat& model_format = ModelFormat::ONNX)
|
||
```
|
||
FSANet模型加载和初始化,其中model_file为导出的ONNX模型格式。
|
||
**参数**
|
||
> * **model_file**(str): 模型文件路径
|
||
> * **params_file**(str): 参数文件路径,当模型格式为ONNX时,此参数传入空字符串即可
|
||
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
|
||
> * **model_format**(ModelFormat): 模型格式,默认为ONNX格式
|
||
#### Predict函数
|
||
> ```c++
|
||
> FSANet::Predict(cv::Mat* im, HeadPoseResult* result)
|
||
> ```
|
||
>
|
||
> 模型预测接口,输入图像直接输出头部姿态预测结果。
|
||
>
|
||
> **参数**
|
||
>
|
||
> > * **im**: 输入图像,注意需为HWC,BGR格式
|
||
> > * **result**: 头部姿态预测结果, HeadPoseResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
### 类成员变量
|
||
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
|
||
> > * **size**(vector<int>): 通过此参数修改预处理过程中resize的大小,包含两个整型元素,表示[width, height], 默认值为[112, 112]
|
||
- [模型介绍](../../)
|
||
- [Python部署](../python)
|
||
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
|
||
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
|