mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* [Model] init pp-structurev2-layout code * [Model] init pp-structurev2-layout code * [Model] init pp-structurev2-layout code * [Model] add structurev2_layout_preprocessor * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [PP-StructureV2] add postprocessor and layout detector class * [pybind] add pp-structurev2-layout model pybind * [pybind] add pp-structurev2-layout model pybind * [Bug Fix] fixed code style * [examples] add pp-structurev2-layout c++ examples * [PP-StructureV2] add python example and docs * [benchmark] add pp-structurev2-layout benchmark support
92 lines
2.5 KiB
Python
92 lines
2.5 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import fastdeploy as fd
|
|
import cv2
|
|
import os
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--layout_model",
|
|
required=True,
|
|
help="Path of Layout detection model of PP-StructureV2.")
|
|
parser.add_argument(
|
|
"--image", type=str, required=True, help="Path of test image file.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--device_id",
|
|
type=int,
|
|
default=0,
|
|
help="Define which GPU card used to run model.")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
|
|
layout_option = fd.RuntimeOption()
|
|
|
|
if args.device.lower() == "gpu":
|
|
layout_option.use_gpu(args.device_id)
|
|
|
|
return layout_option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
layout_model_file = os.path.join(args.layout_model, "model.pdmodel")
|
|
layout_params_file = os.path.join(args.layout_model, "model.pdiparams")
|
|
|
|
# Set the runtime option
|
|
layout_option = build_option(args)
|
|
|
|
# Create the table_model
|
|
layout_model = fd.vision.ocr.StructureV2Layout(
|
|
layout_model_file, layout_params_file, layout_option)
|
|
|
|
layout_model.postprocessor.num_class = 5
|
|
|
|
# Read the image
|
|
im = cv2.imread(args.image)
|
|
|
|
# Predict and return the results
|
|
result = layout_model.predict(im)
|
|
|
|
print(result)
|
|
|
|
# Visualize the results
|
|
labels = ["text", "title", "list", "table", "figure"]
|
|
if layout_model.postprocessor.num_class == 10:
|
|
labels = [
|
|
"text", "title", "figure", "figure_caption", "table", "table_caption",
|
|
"header", "footer", "reference", "equation"
|
|
]
|
|
|
|
vis_im = fd.vision.vis_detection(
|
|
im,
|
|
result,
|
|
labels,
|
|
score_threshold=0.5,
|
|
font_color=[255, 0, 0],
|
|
font_thickness=2)
|
|
cv2.imwrite("visualized_result.jpg", vis_im)
|
|
print("Visualized result save in ./visualized_result.jpg")
|