Files
FastDeploy/examples/vision/ocr/PP-OCR/cpu-gpu/python/infer_structurev2_layout.py
DefTruth 6d0261e9e4 [Model] Support PP-StructureV2-Layout model (#1867)
* [Model] init pp-structurev2-layout code

* [Model] init pp-structurev2-layout code

* [Model] init pp-structurev2-layout code

* [Model] add structurev2_layout_preprocessor

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [PP-StructureV2] add postprocessor and layout detector class

* [pybind] add pp-structurev2-layout model pybind

* [pybind] add pp-structurev2-layout model pybind

* [Bug Fix] fixed code style

* [examples] add pp-structurev2-layout c++ examples

* [PP-StructureV2] add python example and docs

* [benchmark] add pp-structurev2-layout benchmark support
2023-05-05 13:05:58 +08:00

92 lines
2.5 KiB
Python

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--layout_model",
required=True,
help="Path of Layout detection model of PP-StructureV2.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--device_id",
type=int,
default=0,
help="Define which GPU card used to run model.")
return parser.parse_args()
def build_option(args):
layout_option = fd.RuntimeOption()
if args.device.lower() == "gpu":
layout_option.use_gpu(args.device_id)
return layout_option
args = parse_arguments()
layout_model_file = os.path.join(args.layout_model, "model.pdmodel")
layout_params_file = os.path.join(args.layout_model, "model.pdiparams")
# Set the runtime option
layout_option = build_option(args)
# Create the table_model
layout_model = fd.vision.ocr.StructureV2Layout(
layout_model_file, layout_params_file, layout_option)
layout_model.postprocessor.num_class = 5
# Read the image
im = cv2.imread(args.image)
# Predict and return the results
result = layout_model.predict(im)
print(result)
# Visualize the results
labels = ["text", "title", "list", "table", "figure"]
if layout_model.postprocessor.num_class == 10:
labels = [
"text", "title", "figure", "figure_caption", "table", "table_caption",
"header", "footer", "reference", "equation"
]
vis_im = fd.vision.vis_detection(
im,
result,
labels,
score_threshold=0.5,
font_color=[255, 0, 0],
font_thickness=2)
cv2.imwrite("visualized_result.jpg", vis_im)
print("Visualized result save in ./visualized_result.jpg")