# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--layout_model", required=True, help="Path of Layout detection model of PP-StructureV2.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") return parser.parse_args() def build_option(args): layout_option = fd.RuntimeOption() if args.device.lower() == "gpu": layout_option.use_gpu(args.device_id) return layout_option args = parse_arguments() layout_model_file = os.path.join(args.layout_model, "model.pdmodel") layout_params_file = os.path.join(args.layout_model, "model.pdiparams") # Set the runtime option layout_option = build_option(args) # Create the table_model layout_model = fd.vision.ocr.StructureV2Layout( layout_model_file, layout_params_file, layout_option) layout_model.postprocessor.num_class = 5 # Read the image im = cv2.imread(args.image) # Predict and return the results result = layout_model.predict(im) print(result) # Visualize the results labels = ["text", "title", "list", "table", "figure"] if layout_model.postprocessor.num_class == 10: labels = [ "text", "title", "figure", "figure_caption", "table", "table_caption", "header", "footer", "reference", "equation" ] vis_im = fd.vision.vis_detection( im, result, labels, score_threshold=0.5, font_color=[255, 0, 0], font_thickness=2) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")