mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST * Add Model Clone function for PaddleClas && PaddleDet && PaddleSeg * Add multi thread demo * Add python model clone function * Add multi thread python && C++ example * Fix bug * Update python && cpp multi_thread examples * Add cpp && python directory * Add README.md for examples * Delete redundant code * Create README_CN.md * Rename README_CN.md to README.md * Update README.md * Update README.md * Update VERSION_NUMBER * Update requirements.txt * Update README.md * update version in doc: * [Serving]Update Dockerfile (#1037) Update Dockerfile * Add license notice for RVM onnx model file (#1060) * [Model] Add GPL-3.0 license (#1065) Add GPL-3.0 license * PPOCR model support model clone * Update README.md * Update PPOCRv2 && PPOCRv3 clone code * Update PPOCR python __init__ * Add multi thread ocr example code * Update README.md * Update README.md * Update ResNet50_vd_infer multi process code * Add PPOCR multi process && thread example * Update README.md * Update README.md * Update multi-thread docs Co-authored-by: Jason <jiangjiajun@baidu.com> Co-authored-by: leiqing <54695910+leiqing1@users.noreply.github.com> Co-authored-by: heliqi <1101791222@qq.com> Co-authored-by: WJJ1995 <wjjisloser@163.com>
4.1 KiB
4.1 KiB
English | 简体中文
PPOCR模型 Python多线程/进程部署示例
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
本目录下提供multi_thread_process_ocr.py
快速完成PPOCRv3在CPU/GPU,以及GPU上通过TensorRT加速部署的多线程/进程示例。执行如下脚本即可完成
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/tutorials/multi_thread/python/pipeline
# 下载模型,图片和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt
# CPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --thread_num 1
# CPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device cpu --use_multi_process True --process_num 1
# GPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --thread_num 1
# GPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --use_multi_process True --process_num 1
# GPU上使用TensorRT多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --thread_num 1
# GPU上使用TensorRT多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device gpu --backend trt --use_multi_process True --process_num 1
# 昆仑芯XPU多线程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --thread_num 1
# 昆仑芯XPU多进程推理
python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path 12.jpg --device kunlunxin --use_multi_process True --process_num 1
注意:
--image_path
可以输入图片文件夹的路径
运行完成后返回结果如下所示
thread: 0 , result: det boxes: [[42,413],[483,391],[484,428],[43,450]]rec text: 上海斯格威铂尔大酒店 rec score:0.949773 cls label: 0 cls score: 1.000000
det boxes: [[187,456],[399,448],[400,480],[188,488]]rec text: 打浦路15号 rec score:0.910265 cls label: 0 cls score: 1.000000
det boxes: [[23,507],[513,488],[515,529],[24,548]]rec text: 绿洲仕格维花园公寓 rec score:0.934239 cls label: 0 cls score: 1.000000
det boxes: [[74,553],[427,542],[428,571],[75,582]]rec text: 打浦路252935号 rec score:0.872207 cls label: 0 cls score: 1.000000