mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* Refactor PaddleSeg with preprocessor && postprocessor * Fix bugs * Delete redundancy code * Modify by comments * Refactor according to comments * Add batch evaluation * Add single test script * Add ppliteseg single test script && fix eval(raise) error * fix bug * Fix evaluation segmentation.py batch predict * Fix segmentation evaluation bug * Fix evaluation segmentation bugs * Update segmentation result docs * Update old predict api and DisableNormalizeAndPermute * Update resize segmentation label map with cv::INTER_NEAREST Co-authored-by: Jason <jiangjiajun@baidu.com>
97 lines
2.9 KiB
C++
97 lines
2.9 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <iostream>
|
|
#include <string>
|
|
#include "fastdeploy/vision.h"
|
|
|
|
void InferHumanPPHumansegv2Lite(const std::string& device = "cpu");
|
|
|
|
int main() {
|
|
InferHumanPPHumansegv2Lite("npu");
|
|
return 0;
|
|
}
|
|
|
|
fastdeploy::RuntimeOption GetOption(const std::string& device) {
|
|
auto option = fastdeploy::RuntimeOption();
|
|
if (device == "npu") {
|
|
option.UseRKNPU2();
|
|
} else {
|
|
option.UseCpu();
|
|
}
|
|
return option;
|
|
}
|
|
|
|
fastdeploy::ModelFormat GetFormat(const std::string& device) {
|
|
auto format = fastdeploy::ModelFormat::ONNX;
|
|
if (device == "npu") {
|
|
format = fastdeploy::ModelFormat::RKNN;
|
|
} else {
|
|
format = fastdeploy::ModelFormat::ONNX;
|
|
}
|
|
return format;
|
|
}
|
|
|
|
std::string GetModelPath(std::string& model_path, const std::string& device) {
|
|
if (device == "npu") {
|
|
model_path += "rknn";
|
|
} else {
|
|
model_path += "onnx";
|
|
}
|
|
return model_path;
|
|
}
|
|
|
|
void InferHumanPPHumansegv2Lite(const std::string& device) {
|
|
std::string model_file =
|
|
"./model/Portrait_PP_HumanSegV2_Lite_256x144_infer/"
|
|
"Portrait_PP_HumanSegV2_Lite_256x144_infer_rk3588.";
|
|
std::string params_file;
|
|
std::string config_file =
|
|
"./model/Portrait_PP_HumanSegV2_Lite_256x144_infer/deploy.yaml";
|
|
|
|
fastdeploy::RuntimeOption option = GetOption(device);
|
|
fastdeploy::ModelFormat format = GetFormat(device);
|
|
model_file = GetModelPath(model_file, device);
|
|
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
|
|
model_file, params_file, config_file, option, format);
|
|
|
|
if (!model.Initialized()) {
|
|
std::cerr << "Failed to initialize." << std::endl;
|
|
return;
|
|
}
|
|
auto image_file =
|
|
"./images/portrait_heng.jpg";
|
|
auto im = cv::imread(image_file);
|
|
|
|
if (device == "npu") {
|
|
model.GetPreprocessor().DisableNormalizeAndPermute();
|
|
}
|
|
|
|
fastdeploy::vision::SegmentationResult res;
|
|
clock_t start = clock();
|
|
if (!model.Predict(im, &res)) {
|
|
std::cerr << "Failed to predict." << std::endl;
|
|
return;
|
|
}
|
|
clock_t end = clock();
|
|
auto dur = (double)(end - start);
|
|
printf("infer_human_pp_humansegv2_lite_npu use time:%f\n",
|
|
(dur / CLOCKS_PER_SEC));
|
|
|
|
std::cout << res.Str() << std::endl;
|
|
auto vis_im = fastdeploy::vision::VisSegmentation(im, res);
|
|
cv::imwrite("human_pp_humansegv2_lite_npu_result.jpg", vis_im);
|
|
std::cout
|
|
<< "Visualized result saved in ./human_pp_humansegv2_lite_npu_result.jpg"
|
|
<< std::endl;
|
|
} |