// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "fastdeploy/vision.h" void InferHumanPPHumansegv2Lite(const std::string& device = "cpu"); int main() { InferHumanPPHumansegv2Lite("npu"); return 0; } fastdeploy::RuntimeOption GetOption(const std::string& device) { auto option = fastdeploy::RuntimeOption(); if (device == "npu") { option.UseRKNPU2(); } else { option.UseCpu(); } return option; } fastdeploy::ModelFormat GetFormat(const std::string& device) { auto format = fastdeploy::ModelFormat::ONNX; if (device == "npu") { format = fastdeploy::ModelFormat::RKNN; } else { format = fastdeploy::ModelFormat::ONNX; } return format; } std::string GetModelPath(std::string& model_path, const std::string& device) { if (device == "npu") { model_path += "rknn"; } else { model_path += "onnx"; } return model_path; } void InferHumanPPHumansegv2Lite(const std::string& device) { std::string model_file = "./model/Portrait_PP_HumanSegV2_Lite_256x144_infer/" "Portrait_PP_HumanSegV2_Lite_256x144_infer_rk3588."; std::string params_file; std::string config_file = "./model/Portrait_PP_HumanSegV2_Lite_256x144_infer/deploy.yaml"; fastdeploy::RuntimeOption option = GetOption(device); fastdeploy::ModelFormat format = GetFormat(device); model_file = GetModelPath(model_file, device); auto model = fastdeploy::vision::segmentation::PaddleSegModel( model_file, params_file, config_file, option, format); if (!model.Initialized()) { std::cerr << "Failed to initialize." << std::endl; return; } auto image_file = "./images/portrait_heng.jpg"; auto im = cv::imread(image_file); if (device == "npu") { model.GetPreprocessor().DisableNormalizeAndPermute(); } fastdeploy::vision::SegmentationResult res; clock_t start = clock(); if (!model.Predict(im, &res)) { std::cerr << "Failed to predict." << std::endl; return; } clock_t end = clock(); auto dur = (double)(end - start); printf("infer_human_pp_humansegv2_lite_npu use time:%f\n", (dur / CLOCKS_PER_SEC)); std::cout << res.Str() << std::endl; auto vis_im = fastdeploy::vision::VisSegmentation(im, res); cv::imwrite("human_pp_humansegv2_lite_npu_result.jpg", vis_im); std::cout << "Visualized result saved in ./human_pp_humansegv2_lite_npu_result.jpg" << std::endl; }