Files
FastDeploy/tutorials/multi_thread/cpp/single_model/README_CN.md
charl-u 29e93fa2dc [Doc]Check and modify broken links in documents (#1207)
* Update README_CN.md

之前的readme cn复制错了,导致存在死链

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update RNN.md

* Update RNN_CN.md

* Update WebDemo.md

* Update WebDemo_CN.md

* Update install_rknn_toolkit2.md

* Update export.md

* Update use_cpp_sdk_on_android.md

* Update README.md

* Update README_Pу́сский_язы́к.md

* Update README_Pу́сский_язы́к.md

* Update README_Pу́сский_язы́к.md

* Update README_Pу́сский_язы́к.md

* Update README_हिन्दी.md

* Update README_日本語.md

* Update README_한국인.md

* Update README_日本語.md

* Update README_CN.md

* Update README_CN.md

* Update README.md

* Update README_CN.md

* Update README.md

* Update README.md

* Update README_CN.md

* Update README_CN.md

* Update README_CN.md

* Update README_CN.md
2023-02-01 15:49:23 +08:00

1.9 KiB
Raw Blame History

English | 中文

PaddleClas C++多线程部署示例

本目录下提供multi_thread.cc快速完成PaddleClas系列模型在CPU/GPU以及GPU上通过TensorRT加速多线程部署的示例。

在部署前,需确认以下两个步骤

以Linux上ResNet50_vd推理为例在本目录执行如下命令即可完成编译测试支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)

mkdir build
cd build
# 下载FastDeploy预编译库用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg


# CPU多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0 1
# GPU多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1 1
# GPU上TensorRT多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2 1

注意: 最后一位数字表示线程数

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

运行完成后返回结果如下所示

Thread Id: 0
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)