mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* 第一次提交 * 补充一处漏翻译 * deleted: docs/en/quantize.md * Update one translation * Update en version * Update one translation in code * Standardize one writing * Standardize one writing * Update some en version * Fix a grammer problem * Update en version for api/vision result * Merge branch 'develop' of https://github.com/charl-u/FastDeploy into develop * Checkout the link in README in vision_results/ to the en documents * Modify a title * Add link to serving/docs/ * Finish translation of demo.md * Update english version of serving/docs/ * Update title of readme * Update some links * Modify a title * Update some links * Update en version of java android README * Modify some titles * Modify some titles * Modify some titles * modify article to document * update some english version of documents in examples * Add english version of documents in examples/visions * Sync to current branch * Add english version of documents in examples
1.5 KiB
1.5 KiB
简体中文 | English
Python推理
在运行demo前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- FastDeploy Python whl包安装,参考FastDeploy Python安装
本文档以 PaddleClas 分类模型 MobileNetV2 为例展示 CPU 上的推理示例
1. 获取模型
import fastdeploy as fd
model_url = "https://bj.bcebos.com/fastdeploy/models/mobilenetv2.tgz"
fd.download_and_decompress(model_url, path=".")
2. 配置后端
option = fd.RuntimeOption()
option.set_model_path("mobilenetv2/inference.pdmodel",
"mobilenetv2/inference.pdiparams")
# **** CPU 配置 ****
option.use_cpu()
option.use_ort_backend()
option.set_cpu_thread_num(12)
# 初始化构造runtime
runtime = fd.Runtime(option)
# 获取模型输入名
input_name = runtime.get_input_info(0).name
# 构造随机数据进行推理
results = runtime.infer({
input_name: np.random.rand(1, 3, 224, 224).astype("float32")
})
print(results[0].shape)
加载完成,会输出提示如下,说明初始化的后端,以及运行的硬件设备
[INFO] fastdeploy/fastdeploy_runtime.cc(283)::Init Runtime initialized with Backend::OrtBackend in device Device::CPU.