Files
FastDeploy/fastdeploy/vision/facedet/contrib/yolov5face.cc
DefTruth 6a368f3448 [Android] Support segmentation and facedet in Android (#567)
* [FlyCV] Add global SetProcLibCpuNumThreads method

* [Android] Support segmentation and facedet in Android

* [Android] add JNI instance check to j_runtime_option_obj

* [Model] fixed ppseg flycv resize error

* [FlyCV] fix FlyCV resize flags

* [cmake] remove un-need lite compile option

* [Android] add PaddleSegModel JNI and fix some bugs

* [Android] bind PaddleSegModel via JNI

* [Android] bind VisSegmentation via JNI

* [Android] bind YOLOv5Face and SCRFD via JNI

* [Android] fix NewJavaFaceDetectionResultFromCxx error
2022-11-13 17:47:50 +08:00

281 lines
10 KiB
C++

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/facedet/contrib/yolov5face.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
namespace fastdeploy {
namespace vision {
namespace facedet {
void LetterBox(Mat* mat, std::vector<int> size, std::vector<float> color,
bool _auto, bool scale_fill = false, bool scale_up = true,
int stride = 32) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h);
}
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
YOLOv5Face::YOLOv5Face(const std::string& model_file,
const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
initialized = Initialize();
}
bool YOLOv5Face::Initialize() {
// parameters for preprocess
size = {640, 640};
padding_value = {114.0, 114.0, 114.0};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = false;
stride = 32;
landmarks_per_face = 5;
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_input_ is 'false'.
is_dynamic_input_ = false;
auto shape = InputInfoOfRuntime(0).shape;
for (int i = 0; i < shape.size(); ++i) {
// if height or width is dynamic
if (i >= 2 && shape[i] <= 0) {
is_dynamic_input_ = true;
break;
}
}
if (!is_dynamic_input_) {
is_mini_pad = false;
}
return true;
}
bool YOLOv5Face::Preprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// process after image load
float ratio = std::min(size[1] * 1.0f / static_cast<float>(mat->Height()),
size[0] * 1.0f / static_cast<float>(mat->Width()));
#ifndef __ANDROID__
// Because of the low CPU performance on the Android device,
// we decided to hide this extra resize. It won't make much
// difference to the final result.
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(round(static_cast<float>(mat->Height()) * ratio));
int resize_w = int(round(static_cast<float>(mat->Width()) * ratio));
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
#endif
// yolov5face's preprocess steps
// 1. letterbox
// 2. BGR->RGB
// 3. HWC->CHW
LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
stride);
BGR2RGB::Run(mat);
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
// std::vector<float>(mat->Channels(), 1.0));
// Compute `result = mat * alpha + beta` directly by channel
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
bool YOLOv5Face::Postprocess(
FDTensor& infer_result, FaceDetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold) {
// infer_result: (1,n,16) 16=4+1+10+1
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
result->Clear();
// must be setup landmarks_per_face before reserve
result->landmarks_per_face = landmarks_per_face;
result->Reserve(infer_result.shape[1]);
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
float* reg_cls_ptr = data + (i * infer_result.shape[2]);
float obj_conf = reg_cls_ptr[4];
float cls_conf = reg_cls_ptr[15];
float confidence = obj_conf * cls_conf;
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
float x = reg_cls_ptr[0];
float y = reg_cls_ptr[1];
float w = reg_cls_ptr[2];
float h = reg_cls_ptr[3];
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
(x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)});
result->scores.push_back(confidence);
// decode landmarks (default 5 landmarks)
if (landmarks_per_face > 0) {
float* landmarks_ptr = reg_cls_ptr + 5;
for (size_t j = 0; j < landmarks_per_face * 2; j += 2) {
result->landmarks.emplace_back(
std::array<float, 2>{landmarks_ptr[j], landmarks_ptr[j + 1]});
}
}
}
if (result->boxes.size() == 0) {
return true;
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
float pad_h = (out_h - ipt_h * scale) / 2.f;
float pad_w = (out_w - ipt_w * scale) / 2.f;
if (is_mini_pad) {
pad_h = static_cast<float>(static_cast<int>(pad_h) % stride);
pad_w = static_cast<float>(static_cast<int>(pad_w) % stride);
}
// scale and clip box
for (size_t i = 0; i < result->boxes.size(); ++i) {
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f);
}
// scale and clip landmarks
for (size_t i = 0; i < result->landmarks.size(); ++i) {
result->landmarks[i][0] =
std::max((result->landmarks[i][0] - pad_w) / scale, 0.0f);
result->landmarks[i][1] =
std::max((result->landmarks[i][1] - pad_h) / scale, 0.0f);
result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f);
result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f);
}
return true;
}
bool YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result,
float conf_threshold, float nms_iou_threshold) {
Mat mat(*im);
std::vector<FDTensor> input_tensors(1);
std::map<std::string, std::array<float, 2>> im_info;
// Record the shape of image and the shape of preprocessed image
im_info["input_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
im_info["output_shape"] = {static_cast<float>(mat.Height()),
static_cast<float>(mat.Width())};
if (!Preprocess(&mat, &input_tensors[0], &im_info)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
input_tensors[0].name = InputInfoOfRuntime(0).name;
std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(output_tensors[0], result, im_info, conf_threshold,
nms_iou_threshold)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace facedet
} // namespace vision
} // namespace fastdeploy