// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/facedet/contrib/yolov5face.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" namespace fastdeploy { namespace vision { namespace facedet { void LetterBox(Mat* mat, std::vector size, std::vector color, bool _auto, bool scale_fill = false, bool scale_up = true, int stride = 32) { float scale = std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width()); if (!scale_up) { scale = std::min(scale, 1.0f); } int resize_h = int(round(mat->Height() * scale)); int resize_w = int(round(mat->Width() * scale)); int pad_w = size[0] - resize_w; int pad_h = size[1] - resize_h; if (_auto) { pad_h = pad_h % stride; pad_w = pad_w % stride; } else if (scale_fill) { pad_h = 0; pad_w = 0; resize_h = size[1]; resize_w = size[0]; } if (resize_h != mat->Height() || resize_w != mat->Width()) { Resize::Run(mat, resize_w, resize_h); } if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, color); } } YOLOv5Face::YOLOv5Face(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; initialized = Initialize(); } bool YOLOv5Face::Initialize() { // parameters for preprocess size = {640, 640}; padding_value = {114.0, 114.0, 114.0}; is_mini_pad = false; is_no_pad = false; is_scale_up = false; stride = 32; landmarks_per_face = 5; if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } // Check if the input shape is dynamic after Runtime already initialized, // Note that, We need to force is_mini_pad 'false' to keep static // shape after padding (LetterBox) when the is_dynamic_input_ is 'false'. is_dynamic_input_ = false; auto shape = InputInfoOfRuntime(0).shape; for (int i = 0; i < shape.size(); ++i) { // if height or width is dynamic if (i >= 2 && shape[i] <= 0) { is_dynamic_input_ = true; break; } } if (!is_dynamic_input_) { is_mini_pad = false; } return true; } bool YOLOv5Face::Preprocess( Mat* mat, FDTensor* output, std::map>* im_info) { // process after image load float ratio = std::min(size[1] * 1.0f / static_cast(mat->Height()), size[0] * 1.0f / static_cast(mat->Width())); #ifndef __ANDROID__ // Because of the low CPU performance on the Android device, // we decided to hide this extra resize. It won't make much // difference to the final result. if (std::fabs(ratio - 1.0f) > 1e-06) { int interp = cv::INTER_AREA; if (ratio > 1.0) { interp = cv::INTER_LINEAR; } int resize_h = int(round(static_cast(mat->Height()) * ratio)); int resize_w = int(round(static_cast(mat->Width()) * ratio)); Resize::Run(mat, resize_w, resize_h, -1, -1, interp); } #endif // yolov5face's preprocess steps // 1. letterbox // 2. BGR->RGB // 3. HWC->CHW LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up, stride); BGR2RGB::Run(mat); // Normalize::Run(mat, std::vector(mat->Channels(), 0.0), // std::vector(mat->Channels(), 1.0)); // Compute `result = mat * alpha + beta` directly by channel std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; std::vector beta = {0.0f, 0.0f, 0.0f}; Convert::Run(mat, alpha, beta); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } bool YOLOv5Face::Postprocess( FDTensor& infer_result, FaceDetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold) { // infer_result: (1,n,16) 16=4+1+10+1 FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } result->Clear(); // must be setup landmarks_per_face before reserve result->landmarks_per_face = landmarks_per_face; result->Reserve(infer_result.shape[1]); float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; ++i) { float* reg_cls_ptr = data + (i * infer_result.shape[2]); float obj_conf = reg_cls_ptr[4]; float cls_conf = reg_cls_ptr[15]; float confidence = obj_conf * cls_conf; // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } float x = reg_cls_ptr[0]; float y = reg_cls_ptr[1]; float w = reg_cls_ptr[2]; float h = reg_cls_ptr[3]; // convert from [x, y, w, h] to [x1, y1, x2, y2] result->boxes.emplace_back(std::array{ (x - w / 2.f), (y - h / 2.f), (x + w / 2.f), (y + h / 2.f)}); result->scores.push_back(confidence); // decode landmarks (default 5 landmarks) if (landmarks_per_face > 0) { float* landmarks_ptr = reg_cls_ptr + 5; for (size_t j = 0; j < landmarks_per_face * 2; j += 2) { result->landmarks.emplace_back( std::array{landmarks_ptr[j], landmarks_ptr[j + 1]}); } } } if (result->boxes.size() == 0) { return true; } utils::NMS(result, nms_iou_threshold); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float scale = std::min(out_h / ipt_h, out_w / ipt_w); float pad_h = (out_h - ipt_h * scale) / 2.f; float pad_w = (out_w - ipt_w * scale) / 2.f; if (is_mini_pad) { pad_h = static_cast(static_cast(pad_h) % stride); pad_w = static_cast(static_cast(pad_w) % stride); } // scale and clip box for (size_t i = 0; i < result->boxes.size(); ++i) { result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f); result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f); result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f); result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); } // scale and clip landmarks for (size_t i = 0; i < result->landmarks.size(); ++i) { result->landmarks[i][0] = std::max((result->landmarks[i][0] - pad_w) / scale, 0.0f); result->landmarks[i][1] = std::max((result->landmarks[i][1] - pad_h) / scale, 0.0f); result->landmarks[i][0] = std::min(result->landmarks[i][0], ipt_w - 1.0f); result->landmarks[i][1] = std::min(result->landmarks[i][1], ipt_h - 1.0f); } return true; } bool YOLOv5Face::Predict(cv::Mat* im, FaceDetectionResult* result, float conf_threshold, float nms_iou_threshold) { Mat mat(*im); std::vector input_tensors(1); std::map> im_info; // Record the shape of image and the shape of preprocessed image im_info["input_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; im_info["output_shape"] = {static_cast(mat.Height()), static_cast(mat.Width())}; if (!Preprocess(&mat, &input_tensors[0], &im_info)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } input_tensors[0].name = InputInfoOfRuntime(0).name; std::vector output_tensors; if (!Infer(input_tensors, &output_tensors)) { FDERROR << "Failed to inference." << std::endl; return false; } if (!Postprocess(output_tensors[0], result, im_info, conf_threshold, nms_iou_threshold)) { FDERROR << "Failed to post process." << std::endl; return false; } return true; } } // namespace facedet } // namespace vision } // namespace fastdeploy