Files
FastDeploy/fastdeploy/vision/detection/contrib/yolov5.cc
DefTruth 6a368f3448 [Android] Support segmentation and facedet in Android (#567)
* [FlyCV] Add global SetProcLibCpuNumThreads method

* [Android] Support segmentation and facedet in Android

* [Android] add JNI instance check to j_runtime_option_obj

* [Model] fixed ppseg flycv resize error

* [FlyCV] fix FlyCV resize flags

* [cmake] remove un-need lite compile option

* [Android] add PaddleSegModel JNI and fix some bugs

* [Android] bind PaddleSegModel via JNI

* [Android] bind VisSegmentation via JNI

* [Android] bind YOLOv5Face and SCRFD via JNI

* [Android] fix NewJavaFaceDetectionResultFromCxx error
2022-11-13 17:47:50 +08:00

385 lines
15 KiB
C++
Executable File

// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision/detection/contrib/yolov5.h"
#include "fastdeploy/utils/perf.h"
#include "fastdeploy/vision/utils/utils.h"
#ifdef ENABLE_CUDA_PREPROCESS
#include "fastdeploy/vision/utils/cuda_utils.h"
#endif // ENABLE_CUDA_PREPROCESS
namespace fastdeploy {
namespace vision {
namespace detection {
void YOLOv5::LetterBox(Mat* mat, std::vector<int> size,
std::vector<float> color, bool _auto, bool scale_fill,
bool scale_up, int stride) {
float scale =
std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width());
if (!scale_up) {
scale = std::min(scale, 1.0f);
}
int resize_h = int(round(mat->Height() * scale));
int resize_w = int(round(mat->Width() * scale));
int pad_w = size[0] - resize_w;
int pad_h = size[1] - resize_h;
if (_auto) {
pad_h = pad_h % stride;
pad_w = pad_w % stride;
} else if (scale_fill) {
pad_h = 0;
pad_w = 0;
resize_h = size[1];
resize_w = size[0];
}
Resize::Run(mat, resize_w, resize_h);
if (pad_h > 0 || pad_w > 0) {
float half_h = pad_h * 1.0 / 2;
int top = int(round(half_h - 0.1));
int bottom = int(round(half_h + 0.1));
float half_w = pad_w * 1.0 / 2;
int left = int(round(half_w - 0.1));
int right = int(round(half_w + 0.1));
Pad::Run(mat, top, bottom, left, right, color);
}
}
YOLOv5::YOLOv5(const std::string& model_file, const std::string& params_file,
const RuntimeOption& custom_option,
const ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::OPENVINO, Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
}
runtime_option = custom_option;
runtime_option.model_format = model_format;
runtime_option.model_file = model_file;
runtime_option.params_file = params_file;
#ifdef ENABLE_CUDA_PREPROCESS
cudaSetDevice(runtime_option.device_id);
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
cuda_stream_ = reinterpret_cast<void*>(stream);
runtime_option.SetExternalStream(cuda_stream_);
#endif // ENABLE_CUDA_PREPROCESS
initialized = Initialize();
}
bool YOLOv5::Initialize() {
// parameters for preprocess
size_ = {640, 640};
padding_value_ = {114.0, 114.0, 114.0};
is_mini_pad_ = false;
is_no_pad_ = false;
is_scale_up_ = false;
stride_ = 32;
max_wh_ = 7680.0;
multi_label_ = true;
reused_input_tensors_.resize(1);
if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
return false;
}
// Check if the input shape is dynamic after Runtime already initialized,
// Note that, We need to force is_mini_pad 'false' to keep static
// shape after padding (LetterBox) when the is_dynamic_shape is 'false'.
// TODO(qiuyanjun): remove
// is_dynamic_input_ = false;
// auto shape = InputInfoOfRuntime(0).shape;
// for (int i = 0; i < shape.size(); ++i) {
// // if height or width is dynamic
// if (i >= 2 && shape[i] <= 0) {
// is_dynamic_input_ = true;
// break;
// }
// }
// if (!is_dynamic_input_) {
// is_mini_pad_ = false;
// }
return true;
}
YOLOv5::~YOLOv5() {
#ifdef ENABLE_CUDA_PREPROCESS
if (use_cuda_preprocessing_) {
CUDA_CHECK(cudaFreeHost(input_img_cuda_buffer_host_));
CUDA_CHECK(cudaFree(input_img_cuda_buffer_device_));
CUDA_CHECK(cudaFree(input_tensor_cuda_buffer_device_));
CUDA_CHECK(cudaStreamDestroy(reinterpret_cast<cudaStream_t>(cuda_stream_)));
}
#endif // ENABLE_CUDA_PREPROCESS
}
bool YOLOv5::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info,
const std::vector<int>& size,
const std::vector<float> padding_value,
bool is_mini_pad, bool is_no_pad, bool is_scale_up,
int stride, float max_wh, bool multi_label) {
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
// process after image load
double ratio = (size[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
static_cast<float>(mat->Width()));
if (std::fabs(ratio - 1.0f) > 1e-06) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
// yolov5's preprocess steps
// 1. letterbox
// 2. BGR->RGB
// 3. HWC->CHW
LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up,
stride);
BGR2RGB::Run(mat);
// Normalize::Run(mat, std::vector<float>(mat->Channels(), 0.0),
// std::vector<float>(mat->Channels(), 1.0));
// Compute `result = mat * alpha + beta` directly by channel
std::vector<float> alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f};
std::vector<float> beta = {0.0f, 0.0f, 0.0f};
Convert::Run(mat, alpha, beta);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
HWC2CHW::Run(mat);
Cast::Run(mat, "float");
mat->ShareWithTensor(output);
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
}
void YOLOv5::UseCudaPreprocessing(int max_image_size) {
#ifdef ENABLE_CUDA_PREPROCESS
use_cuda_preprocessing_ = true;
is_scale_up_ = true;
if (input_img_cuda_buffer_host_ == nullptr) {
// prepare input data cache in GPU pinned memory
CUDA_CHECK(cudaMallocHost((void**)&input_img_cuda_buffer_host_,
max_image_size * 3));
// prepare input data cache in GPU device memory
CUDA_CHECK(
cudaMalloc((void**)&input_img_cuda_buffer_device_, max_image_size * 3));
CUDA_CHECK(cudaMalloc((void**)&input_tensor_cuda_buffer_device_,
3 * size_[0] * size_[1] * sizeof(float)));
}
#else
FDWARNING << "The FastDeploy didn't compile with BUILD_CUDA_SRC=ON."
<< std::endl;
use_cuda_preprocessing_ = false;
#endif
}
bool YOLOv5::CudaPreprocess(
Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info,
const std::vector<int>& size, const std::vector<float> padding_value,
bool is_mini_pad, bool is_no_pad, bool is_scale_up, int stride,
float max_wh, bool multi_label) {
#ifdef ENABLE_CUDA_PREPROCESS
if (is_mini_pad != false || is_no_pad != false || is_scale_up != true) {
FDERROR << "Preprocessing with CUDA is only available when the arguments "
"satisfy (is_mini_pad=false, is_no_pad=false, is_scale_up=true)."
<< std::endl;
return false;
}
// Record the shape of image and the shape of preprocessed image
(*im_info)["input_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
(*im_info)["output_shape"] = {static_cast<float>(mat->Height()),
static_cast<float>(mat->Width())};
cudaStream_t stream = reinterpret_cast<cudaStream_t>(cuda_stream_);
int src_img_buf_size = mat->Height() * mat->Width() * mat->Channels();
memcpy(input_img_cuda_buffer_host_, mat->Data(), src_img_buf_size);
CUDA_CHECK(cudaMemcpyAsync(input_img_cuda_buffer_device_,
input_img_cuda_buffer_host_, src_img_buf_size,
cudaMemcpyHostToDevice, stream));
utils::CudaYoloPreprocess(input_img_cuda_buffer_device_, mat->Width(),
mat->Height(), input_tensor_cuda_buffer_device_,
size[0], size[1], padding_value, stream);
// Record output shape of preprocessed image
(*im_info)["output_shape"] = {static_cast<float>(size[0]),
static_cast<float>(size[1])};
output->SetExternalData({mat->Channels(), size[0], size[1]}, FDDataType::FP32,
input_tensor_cuda_buffer_device_);
output->device = Device::GPU;
output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c
return true;
#else
FDERROR << "CUDA src code was not enabled." << std::endl;
return false;
#endif // ENABLE_CUDA_PREPROCESS
}
bool YOLOv5::Postprocess(
std::vector<FDTensor>& infer_results, DetectionResult* result,
const std::map<std::string, std::array<float, 2>>& im_info,
float conf_threshold, float nms_iou_threshold, bool multi_label,
float max_wh) {
auto& infer_result = infer_results[0];
FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now.");
result->Clear();
if (multi_label) {
result->Reserve(infer_result.shape[1] * (infer_result.shape[2] - 5));
} else {
result->Reserve(infer_result.shape[1]);
}
if (infer_result.dtype != FDDataType::FP32) {
FDERROR << "Only support post process with float32 data." << std::endl;
return false;
}
float* data = static_cast<float*>(infer_result.Data());
for (size_t i = 0; i < infer_result.shape[1]; ++i) {
int s = i * infer_result.shape[2];
float confidence = data[s + 4];
if (multi_label) {
for (size_t j = 5; j < infer_result.shape[2]; ++j) {
confidence = data[s + 4];
float* class_score = data + s + j;
confidence *= (*class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
} else {
float* max_class_score =
std::max_element(data + s + 5, data + s + infer_result.shape[2]);
confidence *= (*max_class_score);
// filter boxes by conf_threshold
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
}
if (result->boxes.size() == 0) {
return true;
}
utils::NMS(result, nms_iou_threshold);
// scale the boxes to the origin image shape
auto iter_out = im_info.find("output_shape");
auto iter_ipt = im_info.find("input_shape");
FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(),
"Cannot find input_shape or output_shape from im_info.");
float out_h = iter_out->second[0];
float out_w = iter_out->second[1];
float ipt_h = iter_ipt->second[0];
float ipt_w = iter_ipt->second[1];
float scale = std::min(out_h / ipt_h, out_w / ipt_w);
for (size_t i = 0; i < result->boxes.size(); ++i) {
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;
int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f);
result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w);
result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h);
result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w);
result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h);
}
return true;
}
bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
float nms_iou_threshold) {
Mat mat(*im);
std::map<std::string, std::array<float, 2>> im_info;
if (use_cuda_preprocessing_) {
if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
stride_, max_wh_, multi_label_)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
} else {
if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info, size_,
padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_,
stride_, max_wh_, multi_label_)) {
FDERROR << "Failed to preprocess input image." << std::endl;
return false;
}
}
reused_input_tensors_[0].name = InputInfoOfRuntime(0).name;
if (!Infer()) {
FDERROR << "Failed to inference." << std::endl;
return false;
}
if (!Postprocess(reused_output_tensors_, result, im_info, conf_threshold,
nms_iou_threshold, multi_label_)) {
FDERROR << "Failed to post process." << std::endl;
return false;
}
return true;
}
} // namespace detection
} // namespace vision
} // namespace fastdeploy