// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "fastdeploy/vision/detection/contrib/yolov5.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" #ifdef ENABLE_CUDA_PREPROCESS #include "fastdeploy/vision/utils/cuda_utils.h" #endif // ENABLE_CUDA_PREPROCESS namespace fastdeploy { namespace vision { namespace detection { void YOLOv5::LetterBox(Mat* mat, std::vector size, std::vector color, bool _auto, bool scale_fill, bool scale_up, int stride) { float scale = std::min(size[1] * 1.0 / mat->Height(), size[0] * 1.0 / mat->Width()); if (!scale_up) { scale = std::min(scale, 1.0f); } int resize_h = int(round(mat->Height() * scale)); int resize_w = int(round(mat->Width() * scale)); int pad_w = size[0] - resize_w; int pad_h = size[1] - resize_h; if (_auto) { pad_h = pad_h % stride; pad_w = pad_w % stride; } else if (scale_fill) { pad_h = 0; pad_w = 0; resize_h = size[1]; resize_w = size[0]; } Resize::Run(mat, resize_w, resize_h); if (pad_h > 0 || pad_w > 0) { float half_h = pad_h * 1.0 / 2; int top = int(round(half_h - 0.1)); int bottom = int(round(half_h + 0.1)); float half_w = pad_w * 1.0 / 2; int left = int(round(half_w - 0.1)); int right = int(round(half_w + 0.1)); Pad::Run(mat, top, bottom, left, right, color); } } YOLOv5::YOLOv5(const std::string& model_file, const std::string& params_file, const RuntimeOption& custom_option, const ModelFormat& model_format) { if (model_format == ModelFormat::ONNX) { valid_cpu_backends = {Backend::OPENVINO, Backend::ORT}; valid_gpu_backends = {Backend::ORT, Backend::TRT}; } else { valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; } runtime_option = custom_option; runtime_option.model_format = model_format; runtime_option.model_file = model_file; runtime_option.params_file = params_file; #ifdef ENABLE_CUDA_PREPROCESS cudaSetDevice(runtime_option.device_id); cudaStream_t stream; CUDA_CHECK(cudaStreamCreate(&stream)); cuda_stream_ = reinterpret_cast(stream); runtime_option.SetExternalStream(cuda_stream_); #endif // ENABLE_CUDA_PREPROCESS initialized = Initialize(); } bool YOLOv5::Initialize() { // parameters for preprocess size_ = {640, 640}; padding_value_ = {114.0, 114.0, 114.0}; is_mini_pad_ = false; is_no_pad_ = false; is_scale_up_ = false; stride_ = 32; max_wh_ = 7680.0; multi_label_ = true; reused_input_tensors_.resize(1); if (!InitRuntime()) { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } // Check if the input shape is dynamic after Runtime already initialized, // Note that, We need to force is_mini_pad 'false' to keep static // shape after padding (LetterBox) when the is_dynamic_shape is 'false'. // TODO(qiuyanjun): remove // is_dynamic_input_ = false; // auto shape = InputInfoOfRuntime(0).shape; // for (int i = 0; i < shape.size(); ++i) { // // if height or width is dynamic // if (i >= 2 && shape[i] <= 0) { // is_dynamic_input_ = true; // break; // } // } // if (!is_dynamic_input_) { // is_mini_pad_ = false; // } return true; } YOLOv5::~YOLOv5() { #ifdef ENABLE_CUDA_PREPROCESS if (use_cuda_preprocessing_) { CUDA_CHECK(cudaFreeHost(input_img_cuda_buffer_host_)); CUDA_CHECK(cudaFree(input_img_cuda_buffer_device_)); CUDA_CHECK(cudaFree(input_tensor_cuda_buffer_device_)); CUDA_CHECK(cudaStreamDestroy(reinterpret_cast(cuda_stream_))); } #endif // ENABLE_CUDA_PREPROCESS } bool YOLOv5::Preprocess(Mat* mat, FDTensor* output, std::map>* im_info, const std::vector& size, const std::vector padding_value, bool is_mini_pad, bool is_no_pad, bool is_scale_up, int stride, float max_wh, bool multi_label) { // Record the shape of image and the shape of preprocessed image (*im_info)["input_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; // process after image load double ratio = (size[0] * 1.0) / std::max(static_cast(mat->Height()), static_cast(mat->Width())); if (std::fabs(ratio - 1.0f) > 1e-06) { int interp = cv::INTER_AREA; if (ratio > 1.0) { interp = cv::INTER_LINEAR; } int resize_h = int(mat->Height() * ratio); int resize_w = int(mat->Width() * ratio); Resize::Run(mat, resize_w, resize_h, -1, -1, interp); } // yolov5's preprocess steps // 1. letterbox // 2. BGR->RGB // 3. HWC->CHW LetterBox(mat, size, padding_value, is_mini_pad, is_no_pad, is_scale_up, stride); BGR2RGB::Run(mat); // Normalize::Run(mat, std::vector(mat->Channels(), 0.0), // std::vector(mat->Channels(), 1.0)); // Compute `result = mat * alpha + beta` directly by channel std::vector alpha = {1.0f / 255.0f, 1.0f / 255.0f, 1.0f / 255.0f}; std::vector beta = {0.0f, 0.0f, 0.0f}; Convert::Run(mat, alpha, beta); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; HWC2CHW::Run(mat); Cast::Run(mat, "float"); mat->ShareWithTensor(output); output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; } void YOLOv5::UseCudaPreprocessing(int max_image_size) { #ifdef ENABLE_CUDA_PREPROCESS use_cuda_preprocessing_ = true; is_scale_up_ = true; if (input_img_cuda_buffer_host_ == nullptr) { // prepare input data cache in GPU pinned memory CUDA_CHECK(cudaMallocHost((void**)&input_img_cuda_buffer_host_, max_image_size * 3)); // prepare input data cache in GPU device memory CUDA_CHECK( cudaMalloc((void**)&input_img_cuda_buffer_device_, max_image_size * 3)); CUDA_CHECK(cudaMalloc((void**)&input_tensor_cuda_buffer_device_, 3 * size_[0] * size_[1] * sizeof(float))); } #else FDWARNING << "The FastDeploy didn't compile with BUILD_CUDA_SRC=ON." << std::endl; use_cuda_preprocessing_ = false; #endif } bool YOLOv5::CudaPreprocess( Mat* mat, FDTensor* output, std::map>* im_info, const std::vector& size, const std::vector padding_value, bool is_mini_pad, bool is_no_pad, bool is_scale_up, int stride, float max_wh, bool multi_label) { #ifdef ENABLE_CUDA_PREPROCESS if (is_mini_pad != false || is_no_pad != false || is_scale_up != true) { FDERROR << "Preprocessing with CUDA is only available when the arguments " "satisfy (is_mini_pad=false, is_no_pad=false, is_scale_up=true)." << std::endl; return false; } // Record the shape of image and the shape of preprocessed image (*im_info)["input_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; (*im_info)["output_shape"] = {static_cast(mat->Height()), static_cast(mat->Width())}; cudaStream_t stream = reinterpret_cast(cuda_stream_); int src_img_buf_size = mat->Height() * mat->Width() * mat->Channels(); memcpy(input_img_cuda_buffer_host_, mat->Data(), src_img_buf_size); CUDA_CHECK(cudaMemcpyAsync(input_img_cuda_buffer_device_, input_img_cuda_buffer_host_, src_img_buf_size, cudaMemcpyHostToDevice, stream)); utils::CudaYoloPreprocess(input_img_cuda_buffer_device_, mat->Width(), mat->Height(), input_tensor_cuda_buffer_device_, size[0], size[1], padding_value, stream); // Record output shape of preprocessed image (*im_info)["output_shape"] = {static_cast(size[0]), static_cast(size[1])}; output->SetExternalData({mat->Channels(), size[0], size[1]}, FDDataType::FP32, input_tensor_cuda_buffer_device_); output->device = Device::GPU; output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c return true; #else FDERROR << "CUDA src code was not enabled." << std::endl; return false; #endif // ENABLE_CUDA_PREPROCESS } bool YOLOv5::Postprocess( std::vector& infer_results, DetectionResult* result, const std::map>& im_info, float conf_threshold, float nms_iou_threshold, bool multi_label, float max_wh) { auto& infer_result = infer_results[0]; FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); result->Clear(); if (multi_label) { result->Reserve(infer_result.shape[1] * (infer_result.shape[2] - 5)); } else { result->Reserve(infer_result.shape[1]); } if (infer_result.dtype != FDDataType::FP32) { FDERROR << "Only support post process with float32 data." << std::endl; return false; } float* data = static_cast(infer_result.Data()); for (size_t i = 0; i < infer_result.shape[1]; ++i) { int s = i * infer_result.shape[2]; float confidence = data[s + 4]; if (multi_label) { for (size_t j = 5; j < infer_result.shape[2]; ++j) { confidence = data[s + 4]; float* class_score = data + s + j; confidence *= (*class_score); // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } int32_t label_id = std::distance(data + s + 5, class_score); // convert from [x, y, w, h] to [x1, y1, x2, y2] result->boxes.emplace_back(std::array{ data[s] - data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh, data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh}); result->label_ids.push_back(label_id); result->scores.push_back(confidence); } } else { float* max_class_score = std::max_element(data + s + 5, data + s + infer_result.shape[2]); confidence *= (*max_class_score); // filter boxes by conf_threshold if (confidence <= conf_threshold) { continue; } int32_t label_id = std::distance(data + s + 5, max_class_score); // convert from [x, y, w, h] to [x1, y1, x2, y2] result->boxes.emplace_back(std::array{ data[s] - data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh, data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh, data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh}); result->label_ids.push_back(label_id); result->scores.push_back(confidence); } } if (result->boxes.size() == 0) { return true; } utils::NMS(result, nms_iou_threshold); // scale the boxes to the origin image shape auto iter_out = im_info.find("output_shape"); auto iter_ipt = im_info.find("input_shape"); FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), "Cannot find input_shape or output_shape from im_info."); float out_h = iter_out->second[0]; float out_w = iter_out->second[1]; float ipt_h = iter_ipt->second[0]; float ipt_w = iter_ipt->second[1]; float scale = std::min(out_h / ipt_h, out_w / ipt_w); for (size_t i = 0; i < result->boxes.size(); ++i) { float pad_h = (out_h - ipt_h * scale) / 2; float pad_w = (out_w - ipt_w * scale) / 2; int32_t label_id = (result->label_ids)[i]; // clip box result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f); result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f); result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f); result->boxes[i][3] = std::max((result->boxes[i][3] - pad_h) / scale, 0.0f); result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w); result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h); result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w); result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h); } return true; } bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, float nms_iou_threshold) { Mat mat(*im); std::map> im_info; if (use_cuda_preprocessing_) { if (!CudaPreprocess(&mat, &reused_input_tensors_[0], &im_info, size_, padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_, stride_, max_wh_, multi_label_)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } } else { if (!Preprocess(&mat, &reused_input_tensors_[0], &im_info, size_, padding_value_, is_mini_pad_, is_no_pad_, is_scale_up_, stride_, max_wh_, multi_label_)) { FDERROR << "Failed to preprocess input image." << std::endl; return false; } } reused_input_tensors_[0].name = InputInfoOfRuntime(0).name; if (!Infer()) { FDERROR << "Failed to inference." << std::endl; return false; } if (!Postprocess(reused_output_tensors_, result, im_info, conf_threshold, nms_iou_threshold, multi_label_)) { FDERROR << "Failed to post process." << std::endl; return false; } return true; } } // namespace detection } // namespace vision } // namespace fastdeploy