Files
FastDeploy/fastdeploy/model_executor/layers/embeddings.py
2025-06-09 19:20:15 +08:00

174 lines
6.6 KiB
Python

"""
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
import paddle
from paddle import nn
from paddle.distributed import fleet
from .utils import get_tensor
class VocabParallelEmbedding(nn.Layer):
"""
VocabParallelEmbedding Layer
"""
def __init__(
self,
llm_config,
num_embeddings,
embedding_dim=768,
params_dtype="bfloat16",
prefix="",
):
"""
Initialize the VocabParallelEmbedding layer for the model.
Args:
llm_config (LLMConfig): Arguments related to inference, containing
attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim,
num_attention_heads, and ffn_hidden_size.
num_embeddings : vocabulary size.
embedding_dim : size of hidden state.
params_dtype : data type of parameters.
prefix (str): Unique name of the layer, used for naming internal attributes,
you can give it any name you like.
"""
super().__init__()
hcg = fleet.get_hybrid_communicate_group()
self.mp_rank = hcg.get_model_parallel_rank()
self.column_cut = llm_config.parallel_config.column_cut
self.world_size = hcg.get_model_parallel_world_size()
self.ring_id = hcg.get_model_parallel_group().id
self.use_rope = llm_config.model_config.use_rope
self.rope_head_dim = llm_config.model_config.rope_head_dim
self.use_ep = llm_config.parallel_config.use_ep
self.hidden_dropout_prob = llm_config.model_config.hidden_dropout_prob
self.initializer_range = llm_config.model_config.initializer_range
self.weight_sharing = llm_config.model_config.weight_sharing
self.sequence_parallel = llm_config.parallel_config.sequence_parallel
self.weight_sharing_add_bias = llm_config.model_config.weight_sharing_add_bias
self.max_position_embeddings = llm_config.model_config.max_position_embeddings
self.freeze_embedding = llm_config.model_config.freeze_embedding
if self.use_ep:
self.word_embeddings = nn.Embedding(
num_embeddings,
embedding_dim,
)
else:
if not self.column_cut:
self.word_embeddings = fleet.meta_parallel.VocabParallelEmbedding(
num_embeddings,
embedding_dim,
mp_group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range),
),
)
else:
# column cut embedding
self.word_embeddings = nn.Embedding(
num_embeddings,
embedding_dim // self.world_size,
)
self.word_embeddings.weight.is_distributed = True
self.word_embeddings.weight.split_axis = 1
if not self.use_rope:
self.position_embeddings = nn.Embedding(
self.max_position_embeddings,
embedding_dim,
weight_attr=paddle.ParamAttr(
initializer=nn.initializer.Normal(
mean=0.0, std=self.initializer_range),
),
)
self.prefix = prefix
if self.weight_sharing and self.weight_sharing_add_bias:
assert num_embeddings % self.world_size == 0
if self.use_ep:
self.bias = self.create_parameter(
shape=[num_embeddings],
dtype=paddle.get_default_dtype(),
attr=paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(value=0.0),
),
is_bias=True,
)
else:
self.bias = self.create_parameter(
shape=[num_embeddings // self.world_size],
dtype=paddle.get_default_dtype(),
attr=mask_lm_out_bias_attr,
is_bias=True,
)
self.bias.is_distributed = True
if self.freeze_embedding:
self.word_embeddings.weight.learning_rate = 0.0
if not self.use_rope:
self.position_embeddings.weight.learning_rate = 0.0
self.dropout = nn.Dropout(self.hidden_dropout_prob)
self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim),
dtype="int8")
def load_state_dict(self, state_dict):
"""
Load the checkpoint state dictionary into the layer.
Args:
state_dict (dict): A dictionary containing the checkpoint weights and biases.
"""
self.word_embeddings.weight.set_value(
get_tensor(state_dict.pop(self.prefix + ".weight")).astype(
paddle.get_default_dtype()))
def forward(self, ids_remove_padding=None):
"""
Defines the forward computation of the layer.
Args:
ids_remove_padding (Tensor, optional): Tensor of token IDs, with padding removed.
If None, no input is provided.
Returns:
Tensor: Embedded tensor representation of the input IDs.
"""
if self.use_ep:
input_embedings = self.word_embeddings(ids_remove_padding)
else:
if self.column_cut:
input_embedings = self.word_embeddings(ids_remove_padding)
inputs_embeds_temp = []
paddle.distributed.all_gather(
inputs_embeds_temp,
input_embedings,
group=fleet.get_hybrid_communicate_group().
get_model_parallel_group(),
sync_op=True,
)
input_embedings = paddle.concat(inputs_embeds_temp, -1)
else:
input_embedings = self.word_embeddings(ids_remove_padding)
return input_embedings