""" # Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import paddle from paddle import nn from paddle.distributed import fleet from .utils import get_tensor class VocabParallelEmbedding(nn.Layer): """ VocabParallelEmbedding Layer """ def __init__( self, llm_config, num_embeddings, embedding_dim=768, params_dtype="bfloat16", prefix="", ): """ Initialize the VocabParallelEmbedding layer for the model. Args: llm_config (LLMConfig): Arguments related to inference, containing attributes such as weight_dtype, act_dtype, mp_size, hidden_size, head_dim, num_attention_heads, and ffn_hidden_size. num_embeddings : vocabulary size. embedding_dim : size of hidden state. params_dtype : data type of parameters. prefix (str): Unique name of the layer, used for naming internal attributes, you can give it any name you like. """ super().__init__() hcg = fleet.get_hybrid_communicate_group() self.mp_rank = hcg.get_model_parallel_rank() self.column_cut = llm_config.parallel_config.column_cut self.world_size = hcg.get_model_parallel_world_size() self.ring_id = hcg.get_model_parallel_group().id self.use_rope = llm_config.model_config.use_rope self.rope_head_dim = llm_config.model_config.rope_head_dim self.use_ep = llm_config.parallel_config.use_ep self.hidden_dropout_prob = llm_config.model_config.hidden_dropout_prob self.initializer_range = llm_config.model_config.initializer_range self.weight_sharing = llm_config.model_config.weight_sharing self.sequence_parallel = llm_config.parallel_config.sequence_parallel self.weight_sharing_add_bias = llm_config.model_config.weight_sharing_add_bias self.max_position_embeddings = llm_config.model_config.max_position_embeddings self.freeze_embedding = llm_config.model_config.freeze_embedding if self.use_ep: self.word_embeddings = nn.Embedding( num_embeddings, embedding_dim, ) else: if not self.column_cut: self.word_embeddings = fleet.meta_parallel.VocabParallelEmbedding( num_embeddings, embedding_dim, mp_group=fleet.get_hybrid_communicate_group(). get_model_parallel_group(), weight_attr=paddle.ParamAttr( initializer=nn.initializer.Normal( mean=0.0, std=self.initializer_range), ), ) else: # column cut embedding self.word_embeddings = nn.Embedding( num_embeddings, embedding_dim // self.world_size, ) self.word_embeddings.weight.is_distributed = True self.word_embeddings.weight.split_axis = 1 if not self.use_rope: self.position_embeddings = nn.Embedding( self.max_position_embeddings, embedding_dim, weight_attr=paddle.ParamAttr( initializer=nn.initializer.Normal( mean=0.0, std=self.initializer_range), ), ) self.prefix = prefix if self.weight_sharing and self.weight_sharing_add_bias: assert num_embeddings % self.world_size == 0 if self.use_ep: self.bias = self.create_parameter( shape=[num_embeddings], dtype=paddle.get_default_dtype(), attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.0), ), is_bias=True, ) else: self.bias = self.create_parameter( shape=[num_embeddings // self.world_size], dtype=paddle.get_default_dtype(), attr=mask_lm_out_bias_attr, is_bias=True, ) self.bias.is_distributed = True if self.freeze_embedding: self.word_embeddings.weight.learning_rate = 0.0 if not self.use_rope: self.position_embeddings.weight.learning_rate = 0.0 self.dropout = nn.Dropout(self.hidden_dropout_prob) self.rope_head_dim_shape_tensor = paddle.ones((self.rope_head_dim), dtype="int8") def load_state_dict(self, state_dict): """ Load the checkpoint state dictionary into the layer. Args: state_dict (dict): A dictionary containing the checkpoint weights and biases. """ self.word_embeddings.weight.set_value( get_tensor(state_dict.pop(self.prefix + ".weight")).astype( paddle.get_default_dtype())) def forward(self, ids_remove_padding=None): """ Defines the forward computation of the layer. Args: ids_remove_padding (Tensor, optional): Tensor of token IDs, with padding removed. If None, no input is provided. Returns: Tensor: Embedded tensor representation of the input IDs. """ if self.use_ep: input_embedings = self.word_embeddings(ids_remove_padding) else: if self.column_cut: input_embedings = self.word_embeddings(ids_remove_padding) inputs_embeds_temp = [] paddle.distributed.all_gather( inputs_embeds_temp, input_embedings, group=fleet.get_hybrid_communicate_group(). get_model_parallel_group(), sync_op=True, ) input_embedings = paddle.concat(inputs_embeds_temp, -1) else: input_embedings = self.word_embeddings(ids_remove_padding) return input_embedings