Files
FastDeploy/fastdeploy/model_executor/layers/attention/attention.py
2025-06-09 19:20:15 +08:00

117 lines
4.3 KiB
Python

"""
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from typing import Optional
import paddle
from paddle import nn
from fastdeploy.worker.model_runner import ForwardMeta
class Attention(nn.Layer):
"""
The AttentionLayer.
"""
def __init__(
self,
llm_config,
layer_id: int,
logit_cap: float = 0.0,
v_head_dim: int = -1,
rope_type: str = "",
qkv_bias: Optional[paddle.Tensor] = None,
qkv_scale: Optional[paddle.Tensor] = None,
prefix: str = "",
out_scale: float = -1.,
linear_shift=None,
linear_smooth=None,
use_neox_rotary_style=False,
) -> None:
"""
Initializes `LMLayer` with the given parameters.
Args:
llm_config (dict): The config of LM model.
layer_id (int): The id of current layer.
logit_cap (float, optional): The cap for logits. Defaults to 0.0.
v_head_dim (int, optional): The head dim of value. Defaults to -1.
rope_type (str, optional): The type of RoPE. Defaults to "".
qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None.
qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None.
prefix (str, optional): The name of current layer. Defaults to "".
linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None.
linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None.
Raises:
ValueError: If the `v_head_dim` is less than 0.
"""
super().__init__()
self.num_heads = llm_config.model_config.num_attention_heads // llm_config.parallel_config.mp_size
self.head_dim = llm_config.model_config.hidden_size // llm_config.model_config.num_attention_heads
self.kv_num_heads = llm_config.model_config.num_key_value_heads // llm_config.parallel_config.mp_size
self.layer_id = layer_id
self.logit_cap = logit_cap
self.v_head_dim = v_head_dim if v_head_dim > 0 else self.head_dim
self.rope_type = rope_type
self.qk_head_dim = self.head_dim
# not use
self.tp_q_head_num = self.num_heads
self.tp_k_head_num = self.num_heads
self.tp_v_head_num = self.num_heads
# not use
self.scaling = 1.0 / (self.head_dim**0.5)
self.linear_shift = linear_shift
self.linear_smooth = linear_smooth
self.qkv_bias = qkv_bias
self.qkv_scale = qkv_scale
self._dtype = self._helper.get_default_dtype()
self.out_scale = out_scale
self.use_neox_rotary_style = use_neox_rotary_style
if llm_config.kvcache_config is not None:
self.kvcache_quant_method = llm_config.kvcache_config.kvcache_quant_config.get_quant_method(
self)
self.kvcache_quant_method.create_weights(self)
if llm_config.quant_config is not None:
self.quant_max_bound = llm_config.quant_config.quant_max_bound
self.quant_min_bound = llm_config.quant_config.quant_min_bound
def forward(
self,
q: paddle.Tensor = None,
k: paddle.Tensor = None,
v: paddle.Tensor = None,
qkv: paddle.Tensor = None,
forward_meta: ForwardMeta = None,
):
"""
The forward function of attention layer.
args:
q: the query tensor
k: the key tensor
v: the value tensor
forward_meta: the forward meta data
"""
return forward_meta.attn_backend.forward(
q,
k,
v,
qkv,
self,
forward_meta,
)