""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ from typing import Optional import paddle from paddle import nn from fastdeploy.worker.model_runner import ForwardMeta class Attention(nn.Layer): """ The AttentionLayer. """ def __init__( self, llm_config, layer_id: int, logit_cap: float = 0.0, v_head_dim: int = -1, rope_type: str = "", qkv_bias: Optional[paddle.Tensor] = None, qkv_scale: Optional[paddle.Tensor] = None, prefix: str = "", out_scale: float = -1., linear_shift=None, linear_smooth=None, use_neox_rotary_style=False, ) -> None: """ Initializes `LMLayer` with the given parameters. Args: llm_config (dict): The config of LM model. layer_id (int): The id of current layer. logit_cap (float, optional): The cap for logits. Defaults to 0.0. v_head_dim (int, optional): The head dim of value. Defaults to -1. rope_type (str, optional): The type of RoPE. Defaults to "". qkv_bias (Optional[paddle.Tensor], optional): The bias of QKV. Defaults to None. qkv_scale (Optional[paddle.Tensor], optional): The scale of QKV. Defaults to None. prefix (str, optional): The name of current layer. Defaults to "". linear_shift (Optional[paddle.Tensor], optional): The shift of linear. Defaults to None. linear_smooth (Optional[paddle.Tensor], optional): The smooth of linear. Defaults to None. Raises: ValueError: If the `v_head_dim` is less than 0. """ super().__init__() self.num_heads = llm_config.model_config.num_attention_heads // llm_config.parallel_config.mp_size self.head_dim = llm_config.model_config.hidden_size // llm_config.model_config.num_attention_heads self.kv_num_heads = llm_config.model_config.num_key_value_heads // llm_config.parallel_config.mp_size self.layer_id = layer_id self.logit_cap = logit_cap self.v_head_dim = v_head_dim if v_head_dim > 0 else self.head_dim self.rope_type = rope_type self.qk_head_dim = self.head_dim # not use self.tp_q_head_num = self.num_heads self.tp_k_head_num = self.num_heads self.tp_v_head_num = self.num_heads # not use self.scaling = 1.0 / (self.head_dim**0.5) self.linear_shift = linear_shift self.linear_smooth = linear_smooth self.qkv_bias = qkv_bias self.qkv_scale = qkv_scale self._dtype = self._helper.get_default_dtype() self.out_scale = out_scale self.use_neox_rotary_style = use_neox_rotary_style if llm_config.kvcache_config is not None: self.kvcache_quant_method = llm_config.kvcache_config.kvcache_quant_config.get_quant_method( self) self.kvcache_quant_method.create_weights(self) if llm_config.quant_config is not None: self.quant_max_bound = llm_config.quant_config.quant_max_bound self.quant_min_bound = llm_config.quant_config.quant_min_bound def forward( self, q: paddle.Tensor = None, k: paddle.Tensor = None, v: paddle.Tensor = None, qkv: paddle.Tensor = None, forward_meta: ForwardMeta = None, ): """ The forward function of attention layer. args: q: the query tensor k: the key tensor v: the value tensor forward_meta: the forward meta data """ return forward_meta.attn_backend.forward( q, k, v, qkv, self, forward_meta, )