mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 11:56:44 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| # PaddleSeg C++部署示例
 | ||
| 
 | ||
| 本目录下提供`infer.cc`快速完成Unet在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/the%20software%20and%20hardware%20requirements.md)  
 | ||
| - 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../docs/quick_start)
 | ||
| 
 | ||
| 以Linux上CPU推理为例,在本目录执行如下命令即可完成编译测试
 | ||
| 
 | ||
| ```bash
 | ||
| mkdir build
 | ||
| cd build
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/libs/0.2.0/fastdeploy-linux-x64-gpu-0.2.0.tgz
 | ||
| tar xvf fastdeploy-linux-x64-gpu-0.2.0.tgz
 | ||
| cd fastdeploy-linux-x64-gpu-0.2.0/examples/vision/segmentation/paddleseg/cpp/build
 | ||
| cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/../../../../../../../fastdeploy-linux-x64-gpu-0.2.0
 | ||
| make -j
 | ||
| 
 | ||
| # 下载Unet模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/Unet_cityscapes_without_argmax_infer.tgz
 | ||
| tar -xvf Unet_cityscapes_without_argmax_infer.tgz
 | ||
| wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
 | ||
| 
 | ||
| 
 | ||
| # CPU推理
 | ||
| ./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 0
 | ||
| # GPU推理
 | ||
| ./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 1
 | ||
| # GPU上TensorRT推理
 | ||
| ./infer_demo Unet_cityscapes_without_argmax_infer Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
 | ||
| ```
 | ||
| 
 | ||
| 运行完成可视化结果如下图所示
 | ||
| <div  align="center">  
 | ||
| <img src="https://user-images.githubusercontent.com/16222477/184588768-45ee673b-ef1f-40f4-9fbd-6b1a9ce17c59.png", width=512px, height=256px />
 | ||
| </div>
 | ||
| 
 | ||
| 以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:  
 | ||
| - [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/compile/how_to_use_sdk_on_windows.md)
 | ||
| 
 | ||
| ## PaddleSeg C++接口
 | ||
| 
 | ||
| ### PaddleSeg类
 | ||
| 
 | ||
| ```c++
 | ||
| fastdeploy::vision::segmentation::PaddleSegModel(
 | ||
|         const string& model_file,
 | ||
|         const string& params_file = "",
 | ||
|         const string& config_file,
 | ||
|         const RuntimeOption& runtime_option = RuntimeOption(),
 | ||
|         const Frontend& model_format = Frontend::PADDLE)
 | ||
| ```
 | ||
| 
 | ||
| PaddleSegModel模型加载和初始化,其中model_file为导出的Paddle模型格式。
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径
 | ||
| > * **config_file**(str): 推理部署配置文件
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(Frontend): 模型格式,默认为Paddle格式
 | ||
| 
 | ||
| #### Predict函数
 | ||
| 
 | ||
| > ```c++
 | ||
| > PaddleSegModel::Predict(cv::Mat* im, DetectionResult* result)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测接口,输入图像直接输出检测结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **im**: 输入图像,注意需为HWC,BGR格式
 | ||
| > > * **result**: 分割结果,包括分割预测的标签以及标签对应的概率值, SegmentationResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| ### 类成员属性
 | ||
| #### 预处理参数
 | ||
| 用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
 | ||
| 
 | ||
| > > * **is_vertical_screen**(bool): PP-HumanSeg系列模型通过设置此参数为`True`表明输入图片是竖屏,即height大于width的图片
 | ||
| 
 | ||
| #### 后处理参数
 | ||
| > > * **with_softmax**(bool): 当模型导出时,并未指定`with_softmax`参数,可通过此设置此参数为`True`,将预测的输出分割标签(label_map)对应的概率结果(score_map)做softmax归一化处理
 | ||
| 
 | ||
| - [模型介绍](../../)
 | ||
| - [Python部署](../python)
 | ||
| - [视觉模型预测结果](../../../../../docs/api/vision_results/)
 | 
