mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00
82 lines
3.0 KiB
Python
82 lines
3.0 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
import sys
|
|
import unittest
|
|
from unittest.mock import Mock
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.distributed.fleet as fleet
|
|
|
|
from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding
|
|
from fastdeploy.model_executor.models.ernie4_5_mtp import Ernie4_5_MTPForCausalLM
|
|
|
|
sys.path.append("../")
|
|
from utils import get_default_test_fd_config
|
|
|
|
strategy = fleet.DistributedStrategy()
|
|
fleet.init(strategy=strategy)
|
|
|
|
|
|
class TestErnie4_5_MTPLoadWeights(unittest.TestCase):
|
|
def setUp(self):
|
|
self.fd_config = get_default_test_fd_config()
|
|
self.fd_config.speculative_config = Mock()
|
|
self.fd_config.speculative_config.sharing_model = Mock()
|
|
self.fd_config.speculative_config.sharing_model.ernie = Mock()
|
|
self.fd_config.parallel_config.tp_group = None
|
|
self.fd_config.speculative_config.sharing_model.ernie.embed_tokens = VocabParallelEmbedding(
|
|
fd_config=self.fd_config,
|
|
num_embeddings=self.fd_config.model_config.vocab_size,
|
|
embedding_dim=self.fd_config.model_config.hidden_size,
|
|
params_dtype=paddle.get_default_dtype,
|
|
prefix=("embed_tokens"),
|
|
)
|
|
self.fd_config.speculative_config.sharing_model.ernie.lm_head = Mock()
|
|
self.model = Ernie4_5_MTPForCausalLM(self.fd_config)
|
|
|
|
def test_load_weights_normal_case(self):
|
|
weights_iterator = [
|
|
("ernie.embed_tokens.weight", np.random.rand(32000, 768).astype("float32")),
|
|
("ernie.mtp_block.0.self_attn.qkv_proj.weight", np.random.rand(768, 768 * 3).astype("float32")),
|
|
]
|
|
for k, v in self.model.named_parameters():
|
|
print("{}".format(k))
|
|
|
|
self.model.load_weights(iter(weights_iterator))
|
|
|
|
self.assertTrue(np.allclose(self.model.ernie.embed_tokens.embeddings.weight.numpy(), weights_iterator[0][1]))
|
|
|
|
def test_load_weights_with_unexpected_keys(self):
|
|
weights_iterator = [
|
|
("unknown_key", np.random.rand(10, 10).astype("float32")),
|
|
("ernie.embed_tokens.weight", np.random.rand(32000, 768).astype("float32")),
|
|
]
|
|
|
|
self.model.load_weights(iter(weights_iterator))
|
|
|
|
self.assertTrue(np.allclose(self.model.ernie.embed_tokens.embeddings.weight.numpy(), weights_iterator[1][1]))
|
|
|
|
def test_load_weights_empty_iterator(self):
|
|
weights_iterator = []
|
|
|
|
self.model.load_weights(iter(weights_iterator))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|