""" # Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ import sys import unittest from unittest.mock import Mock import numpy as np import paddle import paddle.distributed.fleet as fleet from fastdeploy.model_executor.layers.embeddings import VocabParallelEmbedding from fastdeploy.model_executor.models.ernie4_5_mtp import Ernie4_5_MTPForCausalLM sys.path.append("../") from utils import get_default_test_fd_config strategy = fleet.DistributedStrategy() fleet.init(strategy=strategy) class TestErnie4_5_MTPLoadWeights(unittest.TestCase): def setUp(self): self.fd_config = get_default_test_fd_config() self.fd_config.speculative_config = Mock() self.fd_config.speculative_config.sharing_model = Mock() self.fd_config.speculative_config.sharing_model.ernie = Mock() self.fd_config.parallel_config.tp_group = None self.fd_config.speculative_config.sharing_model.ernie.embed_tokens = VocabParallelEmbedding( fd_config=self.fd_config, num_embeddings=self.fd_config.model_config.vocab_size, embedding_dim=self.fd_config.model_config.hidden_size, params_dtype=paddle.get_default_dtype, prefix=("embed_tokens"), ) self.fd_config.speculative_config.sharing_model.ernie.lm_head = Mock() self.model = Ernie4_5_MTPForCausalLM(self.fd_config) def test_load_weights_normal_case(self): weights_iterator = [ ("ernie.embed_tokens.weight", np.random.rand(32000, 768).astype("float32")), ("ernie.mtp_block.0.self_attn.qkv_proj.weight", np.random.rand(768, 768 * 3).astype("float32")), ] for k, v in self.model.named_parameters(): print("{}".format(k)) self.model.load_weights(iter(weights_iterator)) self.assertTrue(np.allclose(self.model.ernie.embed_tokens.embeddings.weight.numpy(), weights_iterator[0][1])) def test_load_weights_with_unexpected_keys(self): weights_iterator = [ ("unknown_key", np.random.rand(10, 10).astype("float32")), ("ernie.embed_tokens.weight", np.random.rand(32000, 768).astype("float32")), ] self.model.load_weights(iter(weights_iterator)) self.assertTrue(np.allclose(self.model.ernie.embed_tokens.embeddings.weight.numpy(), weights_iterator[1][1])) def test_load_weights_empty_iterator(self): weights_iterator = [] self.model.load_weights(iter(weights_iterator)) if __name__ == "__main__": unittest.main()