mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00

* Add notes for tensors * Optimize some apis * move some warnings * Support build with Paddle2ONNX * Add protobuf support * Fix compile on mac * add clearn package script * Add paddle2onnx code * remove submodule * Add onnx ocde * remove softlink * add onnx code * fix error * Add cmake file * fix patchelf * update paddle2onnx * Delete .gitmodules --------- Co-authored-by: PaddleCI <paddle_ci@example.com> Co-authored-by: pangyoki <pangyoki@126.com> Co-authored-by: jiangjiajun <jiangjiajun@baidu.lcom>
79 lines
3.2 KiB
Python
79 lines
3.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
|
|
import numpy as np
|
|
from paddle2onnx.legacy.constant import dtypes
|
|
from paddle2onnx.utils import logging
|
|
from paddle2onnx.legacy.op_mapper import OpMapper as op_mapper
|
|
|
|
|
|
@op_mapper('im2sequence')
|
|
class Im2Sequence():
|
|
support_opset_verison_range = (1, 12)
|
|
|
|
@classmethod
|
|
def opset_1(cls, graph, node, **kw):
|
|
n, c, h, w = node.input_shape('X', 0)
|
|
assert h > 0 and w > 0, "Only supported fixed input shape for im2sequence operator."
|
|
stride_h, stride_w = node.attr('strides')
|
|
paddings = node.attr('paddings')
|
|
assert node.attr(
|
|
'out_stride'
|
|
) != 1, "Only out_stride==1 is supported for im2sequence operator."
|
|
h = h + paddings[0] + paddings[1]
|
|
w = w + paddings[1] + paddings[2]
|
|
kernel_h, kernel_w = node.attr('kernels')
|
|
out_h = 1 + (h - kernel_h + stride_h - 1) // stride_h
|
|
out_w = 1 + (w - kernel_w + stride_w - 1) // stride_w
|
|
h_steps = list()
|
|
for i in range(out_h):
|
|
h_steps.append([i * stride_h, i * stride_h + kernel_h])
|
|
w_steps = list()
|
|
for i in range(out_w):
|
|
w_steps.append([i * stride_w, i * stride_w + kernel_w])
|
|
|
|
slice_node_blocks = list()
|
|
for i in range(out_h):
|
|
for j in range(out_w):
|
|
starts_node = graph.make_node(
|
|
'Constant',
|
|
dtype=dtypes.ONNX.INT64,
|
|
dims=[4],
|
|
value=[0, 0, h_steps[i][0], w_steps[j][0]])
|
|
ends_node = graph.make_node(
|
|
'Constant',
|
|
dtype=dtypes.ONNX.INT64,
|
|
dims=[4],
|
|
value=[999999, 999999, h_steps[i][1], w_steps[j][1]])
|
|
nodes.extend([starts_node, ends_node])
|
|
|
|
slice_block_node = graph.make_node(
|
|
'Slice',
|
|
inputs=[node.input('X', 0), starts_node, ends_node])
|
|
flatten_block_node = graph.make_node(
|
|
"Flatten", inputs=[slice_block_node], axis=0)
|
|
nodes.extend([slice_block_node, flatten_block_node])
|
|
concat_block_node = graph.make_node(
|
|
"Concat",
|
|
inputs=slice_node_blocks,
|
|
outputs=node.output('Out'),
|
|
axis=0)
|
|
logging.info("==========Importance Notice===========")
|
|
logging.info(
|
|
"Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1."
|
|
)
|
|
logging.info("======================================")
|