# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License" # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import numpy as np from paddle2onnx.legacy.constant import dtypes from paddle2onnx.utils import logging from paddle2onnx.legacy.op_mapper import OpMapper as op_mapper @op_mapper('im2sequence') class Im2Sequence(): support_opset_verison_range = (1, 12) @classmethod def opset_1(cls, graph, node, **kw): n, c, h, w = node.input_shape('X', 0) assert h > 0 and w > 0, "Only supported fixed input shape for im2sequence operator." stride_h, stride_w = node.attr('strides') paddings = node.attr('paddings') assert node.attr( 'out_stride' ) != 1, "Only out_stride==1 is supported for im2sequence operator." h = h + paddings[0] + paddings[1] w = w + paddings[1] + paddings[2] kernel_h, kernel_w = node.attr('kernels') out_h = 1 + (h - kernel_h + stride_h - 1) // stride_h out_w = 1 + (w - kernel_w + stride_w - 1) // stride_w h_steps = list() for i in range(out_h): h_steps.append([i * stride_h, i * stride_h + kernel_h]) w_steps = list() for i in range(out_w): w_steps.append([i * stride_w, i * stride_w + kernel_w]) slice_node_blocks = list() for i in range(out_h): for j in range(out_w): starts_node = graph.make_node( 'Constant', dtype=dtypes.ONNX.INT64, dims=[4], value=[0, 0, h_steps[i][0], w_steps[j][0]]) ends_node = graph.make_node( 'Constant', dtype=dtypes.ONNX.INT64, dims=[4], value=[999999, 999999, h_steps[i][1], w_steps[j][1]]) nodes.extend([starts_node, ends_node]) slice_block_node = graph.make_node( 'Slice', inputs=[node.input('X', 0), starts_node, ends_node]) flatten_block_node = graph.make_node( "Flatten", inputs=[slice_block_node], axis=0) nodes.extend([slice_block_node, flatten_block_node]) concat_block_node = graph.make_node( "Concat", inputs=slice_node_blocks, outputs=node.output('Out'), axis=0) logging.info("==========Importance Notice===========") logging.info( "Since im2sequence operator is used in your paddlepaddle model, the translated onnx model only support input data with batch_size=1." ) logging.info("======================================")