mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* Update README_CN.md 之前的readme cn复制错了,导致存在死链 * Update README_CN.md * Update README_CN.md * Update README.md * Update README.md * Update README.md * Update README_CN.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update RNN.md * Update RNN_CN.md * Update WebDemo.md * Update WebDemo_CN.md * Update install_rknn_toolkit2.md * Update export.md * Update use_cpp_sdk_on_android.md * Update README.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_Pу́сский_язы́к.md * Update README_हिन्दी.md * Update README_日本語.md * Update README_한국인.md * Update README_日本語.md * Update README_CN.md * Update README_CN.md * Update README.md * Update README_CN.md * Update README.md * Update README.md * Update README_CN.md * Update README_CN.md * Update README_CN.md * Update README_CN.md
1.9 KiB
1.9 KiB
English | 中文
PaddleClas C++多线程部署示例
本目录下提供multi_thread.cc
快速完成PaddleClas系列模型在CPU/GPU,以及GPU上通过TensorRT加速多线程部署的示例。
在部署前,需确认以下两个步骤
-
- 软硬件环境满足要求,参考FastDeploy环境要求
-
- 根据开发环境,下载预编译部署库和samples代码,参考FastDeploy预编译库
以Linux上ResNet50_vd推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
# CPU多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 0 1
# GPU多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 1 1
# GPU上TensorRT多线程推理
./multi_thread_demo ResNet50_vd_infer ILSVRC2012_val_00000010.jpeg 2 1
注意: 最后一位数字表示线程数
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
运行完成后返回结果如下所示
Thread Id: 0
ClassifyResult(
label_ids: 153,
scores: 0.686229,
)