mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00

* add Cast, HWC2CHW, Normalize, PadToSize, StridePad * add comments * fix comments * fix manager.cc
102 lines
3.2 KiB
C++
102 lines
3.2 KiB
C++
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "fastdeploy/vision/common/processors/manager.h"
|
|
|
|
namespace fastdeploy {
|
|
namespace vision {
|
|
|
|
ProcessorManager::~ProcessorManager() {
|
|
#ifdef WITH_GPU
|
|
if (stream_) cudaStreamDestroy(stream_);
|
|
#endif
|
|
}
|
|
|
|
void ProcessorManager::UseCuda(bool enable_cv_cuda, int gpu_id) {
|
|
#ifdef WITH_GPU
|
|
if (gpu_id >= 0) {
|
|
device_id_ = gpu_id;
|
|
FDASSERT(cudaSetDevice(device_id_) == cudaSuccess,
|
|
"[ERROR] Error occurs while setting cuda device.");
|
|
}
|
|
FDASSERT(cudaStreamCreate(&stream_) == cudaSuccess,
|
|
"[ERROR] Error occurs while creating cuda stream.");
|
|
proc_lib_ = ProcLib::CUDA;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compile with WITH_GPU.");
|
|
#endif
|
|
|
|
if (enable_cv_cuda) {
|
|
#ifdef ENABLE_CVCUDA
|
|
proc_lib_ = ProcLib::CVCUDA;
|
|
#else
|
|
FDASSERT(false, "FastDeploy didn't compile with CV-CUDA.");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
bool ProcessorManager::CudaUsed() {
|
|
return (proc_lib_ == ProcLib::CUDA || proc_lib_ == ProcLib::CVCUDA);
|
|
}
|
|
|
|
void ProcessorManager::PreApply(FDMatBatch* image_batch) {
|
|
FDASSERT(image_batch->mats != nullptr, "The mats is empty.");
|
|
FDASSERT(image_batch->mats->size() > 0,
|
|
"The size of input images should be greater than 0.");
|
|
|
|
if (image_batch->mats->size() > input_caches_.size()) {
|
|
input_caches_.resize(image_batch->mats->size());
|
|
output_caches_.resize(image_batch->mats->size());
|
|
}
|
|
image_batch->input_cache = &batch_input_cache_;
|
|
image_batch->output_cache = &batch_output_cache_;
|
|
image_batch->proc_lib = proc_lib_;
|
|
if (CudaUsed()) {
|
|
SetStream(image_batch);
|
|
}
|
|
|
|
for (size_t i = 0; i < image_batch->mats->size(); ++i) {
|
|
FDMat* mat = &(image_batch->mats->at(i));
|
|
mat->input_cache = &input_caches_[i];
|
|
mat->output_cache = &output_caches_[i];
|
|
mat->proc_lib = proc_lib_;
|
|
if (mat->mat_type == ProcLib::CUDA) {
|
|
// Make a copy of the input data ptr, so that the original data ptr of
|
|
// FDMat won't be modified.
|
|
auto fd_tensor = std::make_shared<FDTensor>();
|
|
fd_tensor->SetExternalData(mat->Tensor()->shape, mat->Tensor()->Dtype(),
|
|
mat->Tensor()->Data(), mat->Tensor()->device,
|
|
mat->Tensor()->device_id);
|
|
mat->SetTensor(fd_tensor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProcessorManager::PostApply() {
|
|
if (CudaUsed()) {
|
|
SyncStream();
|
|
}
|
|
}
|
|
|
|
bool ProcessorManager::Run(std::vector<FDMat>* images,
|
|
std::vector<FDTensor>* outputs) {
|
|
FDMatBatch image_batch(images);
|
|
PreApply(&image_batch);
|
|
bool ret = Apply(&image_batch, outputs);
|
|
PostApply();
|
|
return ret;
|
|
}
|
|
|
|
} // namespace vision
|
|
} // namespace fastdeploy
|