[CVCUDA]add op Python API: Cast, HWC2CHW, Normalize, PadToSize, Resize, StridePad (#1589)

* add Cast, HWC2CHW, Normalize, PadToSize, StridePad

* add comments

* fix comments

* fix manager.cc
This commit is contained in:
guxukai
2023-03-14 19:16:07 +08:00
committed by GitHub
parent 41ee93c75e
commit ab38c9110f
10 changed files with 268 additions and 13 deletions

View File

@@ -0,0 +1,22 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindCast(pybind11::module& m) {
pybind11::class_<vision::Cast, vision::Processor>(m, "Cast").def(
pybind11::init<std::string>(), "Default constructor");
}
} // namespace fastdeploy

View File

@@ -0,0 +1,22 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindHWC2CHW(pybind11::module& m) {
pybind11::class_<vision::HWC2CHW, vision::Processor>(m, "HWC2CHW")
.def(pybind11::init<>(), "Default constructor");
}
} // namespace fastdeploy

View File

@@ -60,7 +60,7 @@ void ProcessorManager::PreApply(FDMatBatch* image_batch) {
}
image_batch->input_cache = &batch_input_cache_;
image_batch->output_cache = &batch_output_cache_;
image_batch->proc_lib = proc_lib_;
if (CudaUsed()) {
SetStream(image_batch);
}

View File

@@ -0,0 +1,24 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindNormalize(pybind11::module& m) {
pybind11::class_<vision::Normalize, vision::Processor>(m, "Normalize")
.def(pybind11::init<std::vector<float>, std::vector<float>, bool,
std::vector<float>, std::vector<float>, bool>(),
"Default constructor");
}
} // namespace fastdeploy

View File

@@ -0,0 +1,23 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindPadToSize(pybind11::module& m) {
pybind11::class_<vision::PadToSize, vision::Processor>(m, "PadToSize")
.def(pybind11::init<int, int, std::vector<float>>(),
"Default constructor");
}
} // namespace fastdeploy

View File

@@ -22,6 +22,12 @@ void BindProcessor(pybind11::module& m);
void BindResizeByShort(pybind11::module& m);
void BindCenterCrop(pybind11::module& m);
void BindPad(pybind11::module& m);
void BindCast(pybind11::module& m);
void BindHWC2CHW(pybind11::module& m);
void BindNormalize(pybind11::module& m);
void BindPadToSize(pybind11::module& m);
void BindResize(pybind11::module& m);
void BindStridePad(pybind11::module& m);
void BindProcessors(pybind11::module& m) {
auto processors_m =
@@ -32,5 +38,11 @@ void BindProcessors(pybind11::module& m) {
BindResizeByShort(processors_m);
BindCenterCrop(processors_m);
BindPad(processors_m);
BindCast(processors_m);
BindHWC2CHW(processors_m);
BindNormalize(processors_m);
BindPadToSize(processors_m);
BindResize(processors_m);
BindStridePad(processors_m);
}
} // namespace fastdeploy

View File

@@ -0,0 +1,23 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindResize(pybind11::module& m) {
pybind11::class_<vision::Resize, vision::Processor>(m, "Resize")
.def(pybind11::init<int, int, float, float, int, bool>(),
"Default constructor");
}
} // namespace fastdeploy

View File

@@ -0,0 +1,22 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/pybind/main.h"
namespace fastdeploy {
void BindStridePad(pybind11::module& m) {
pybind11::class_<vision::StridePad, vision::Processor>(m, "StridePad")
.def(pybind11::init<int, std::vector<float>>(), "Default constructor");
}
} // namespace fastdeploy

View File

@@ -4,16 +4,18 @@ from ... import c_lib_wrap as C
class Processor():
def __init__(self):
self.processor
self.processor = None
def __call__(self, mat):
"""call for processing input.
:param mat: the input data FDMat or FDMatBatch.
"""
self.processor(mat)
class ResizeByShort(Processor):
def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]):
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
use_scale, max_hw)
"""Create a ResizeByShort operation with the given parameters.
:param target_size: the target short size to resize the image
@@ -21,22 +23,22 @@ class ResizeByShort(Processor):
:param use_scale: optionally, whether to scale image
:param max_hw: max spatial size which is used by ResizeByShort
"""
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
use_scale, max_hw)
class CenterCrop(Processor):
def __init__(self, width, height):
self.processor = C.vision.processors.CenterCrop(width, height)
"""Create a CenterCrop operation with the given parameters.
:param width: desired width of the cropped image
:param height: desired height of the cropped image
"""
self.processor = C.vision.processors.CenterCrop(width, height)
class Pad(Processor):
def __init__(self, top: int, bottom: int, left: int, right: int, value=[]):
self.processor = C.vision.processors.Pad(top, bottom, left, right,
value)
"""Create a Pad operation with the given parameters.
:param top: the top padding
@@ -45,6 +47,8 @@ class Pad(Processor):
:param right: the right padding
:param value: the value that is used to pad on the input image
"""
self.processor = C.vision.processors.Pad(top, bottom, left, right,
value)
class NormalizeAndPermute(Processor):
@@ -55,8 +59,6 @@ class NormalizeAndPermute(Processor):
min=[],
max=[],
swap_rb=False):
self.processor = C.vision.processors.NormalizeAndPermute(
mean, std, is_scale, min, max, swap_rb)
"""Creae a Normalize and a Permute operation with the given parameters.
:param mean A list containing the mean of each channel
@@ -65,3 +67,85 @@ class NormalizeAndPermute(Processor):
:param min A list containing the minimum value of each channel
:param max A list containing the maximum value of each channel
"""
self.processor = C.vision.processors.NormalizeAndPermute(
mean, std, is_scale, min, max, swap_rb)
class Cast(Processor):
def __init__(self, dtype="float"):
"""Creat a new cast opereaton with given dtype
:param dtype dtype of the output
"""
self.processor = C.vision.processors.Cast(dtype)
class HWC2CHW(Processor):
def __init__(self):
"""Creat a new hwc2chw processor with default dtype.
:return An instance of processor `HWC2CHW`
"""
self.processor = C.vision.processors.HWC2CHW()
class Normalize(Processor):
def __init__(self,
mean=[],
std=[],
is_scale=True,
min=[],
max=[],
swap_rb=False):
"""Creat a new normalize opereator with given paremeters.
:param mean A list containing the mean of each channel
:param std A list containing the standard deviation of each channel
:param is_scale Specifies if the image are being scaled or not
:param min A list containing the minimum value of each channel
:param max A list containing the maximum value of each channel
"""
self.processor = C.vision.processors.Normalize(mean, std, is_scale,
min, max, swap_rb)
class PadToSize(Processor):
def __init__(self, width, height, value=[]):
"""Create a new PadToSize opereator with given parameters.
:param width Desired width of the output image
:param height Desired height of the output image
:param value values to pad with
"""
self.processor = C.vision.processors.PadToSize(width, height, value)
class Resize(Processor):
def __init__(self,
width,
height,
scale_w=-1.0,
scale_h=-1.0,
interp=1,
use_scale=False):
"""Create a Resize operation with the given parameters.
:param width Desired width of the output image
:param height Desired height of the output image
:param scale_w Scales the width in x-direction
:param scale_h Scales the height in y-direction
:param interp: optionally, the interpolation mode for resizing image
:param use_scale: optionally, whether to scale image
"""
self.processor = C.vision.processors.Resize(width, height, scale_w,
scale_h, interp, use_scale)
class StridePad(Processor):
def __init__(self, stride, value=[]):
"""Create a StridePad processor with given parameters.
:param stride Stride of the processor
:param value values to pad with
"""
self.processor = C.vision.processors.StridePad(stride, value)

View File

@@ -21,7 +21,7 @@ class CustomProcessor(PyProcessorManager):
def __init__(self) -> None:
super().__init__()
# create op
self.resize_op = ResizeByShort(
self.resize_short_op = ResizeByShort(
target_size=100, interp=1, use_scale=True, max_hw=[500, 500])
self.normalize_permute_op = NormalizeAndPermute(
mean=[0.485, 0.456, 0.406],
@@ -31,14 +31,37 @@ class CustomProcessor(PyProcessorManager):
max=[],
swap_rb=False)
self.centercrop_op = CenterCrop(width=50, height=50)
self.pad_op = Pad(
top=5, bottom=5, left=5, right=5, value=[225, 225, 225])
self.pad_op = Pad(top=5,
bottom=5,
left=5,
right=5,
value=[225, 225, 225])
self.cast_op = Cast(dtype="float")
self.hwc2chw_op = HWC2CHW()
self.normalize_op = Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
is_scale=True,
min=[],
max=[],
swap_rb=False)
self.pad_to_size_op = PadToSize(
height=160, width=160, value=[225, 225, 225])
self.resize_op = Resize(
width=50,
height=50,
scale_w=-1.0,
scale_h=-1.0,
interp=1,
use_scale=False)
self.stride_pad_op = StridePad(stride=3, value=[225, 225, 225])
def apply(self, image_batch):
outputs = []
self.resize_op(image_batch)
self.resize_short_op(image_batch)
self.centercrop_op(image_batch)
self.pad_op(image_batch)
self.pad_to_size_op(image_batch)
self.normalize_permute_op(image_batch)
for i in range(len(image_batch.mats)):