mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00
[CVCUDA]add op Python API: Cast, HWC2CHW, Normalize, PadToSize, Resize, StridePad (#1589)
* add Cast, HWC2CHW, Normalize, PadToSize, StridePad * add comments * fix comments * fix manager.cc
This commit is contained in:
22
fastdeploy/vision/common/processors/cast_pybind.cc
Normal file
22
fastdeploy/vision/common/processors/cast_pybind.cc
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindCast(pybind11::module& m) {
|
||||
pybind11::class_<vision::Cast, vision::Processor>(m, "Cast").def(
|
||||
pybind11::init<std::string>(), "Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
22
fastdeploy/vision/common/processors/hwc2chw_pybind.cc
Normal file
22
fastdeploy/vision/common/processors/hwc2chw_pybind.cc
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindHWC2CHW(pybind11::module& m) {
|
||||
pybind11::class_<vision::HWC2CHW, vision::Processor>(m, "HWC2CHW")
|
||||
.def(pybind11::init<>(), "Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
@@ -60,7 +60,7 @@ void ProcessorManager::PreApply(FDMatBatch* image_batch) {
|
||||
}
|
||||
image_batch->input_cache = &batch_input_cache_;
|
||||
image_batch->output_cache = &batch_output_cache_;
|
||||
|
||||
image_batch->proc_lib = proc_lib_;
|
||||
if (CudaUsed()) {
|
||||
SetStream(image_batch);
|
||||
}
|
||||
|
24
fastdeploy/vision/common/processors/normalize_pybind.cc
Normal file
24
fastdeploy/vision/common/processors/normalize_pybind.cc
Normal file
@@ -0,0 +1,24 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindNormalize(pybind11::module& m) {
|
||||
pybind11::class_<vision::Normalize, vision::Processor>(m, "Normalize")
|
||||
.def(pybind11::init<std::vector<float>, std::vector<float>, bool,
|
||||
std::vector<float>, std::vector<float>, bool>(),
|
||||
"Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
23
fastdeploy/vision/common/processors/pad_to_size_pybind.cc
Normal file
23
fastdeploy/vision/common/processors/pad_to_size_pybind.cc
Normal file
@@ -0,0 +1,23 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindPadToSize(pybind11::module& m) {
|
||||
pybind11::class_<vision::PadToSize, vision::Processor>(m, "PadToSize")
|
||||
.def(pybind11::init<int, int, std::vector<float>>(),
|
||||
"Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
@@ -22,6 +22,12 @@ void BindProcessor(pybind11::module& m);
|
||||
void BindResizeByShort(pybind11::module& m);
|
||||
void BindCenterCrop(pybind11::module& m);
|
||||
void BindPad(pybind11::module& m);
|
||||
void BindCast(pybind11::module& m);
|
||||
void BindHWC2CHW(pybind11::module& m);
|
||||
void BindNormalize(pybind11::module& m);
|
||||
void BindPadToSize(pybind11::module& m);
|
||||
void BindResize(pybind11::module& m);
|
||||
void BindStridePad(pybind11::module& m);
|
||||
|
||||
void BindProcessors(pybind11::module& m) {
|
||||
auto processors_m =
|
||||
@@ -32,5 +38,11 @@ void BindProcessors(pybind11::module& m) {
|
||||
BindResizeByShort(processors_m);
|
||||
BindCenterCrop(processors_m);
|
||||
BindPad(processors_m);
|
||||
BindCast(processors_m);
|
||||
BindHWC2CHW(processors_m);
|
||||
BindNormalize(processors_m);
|
||||
BindPadToSize(processors_m);
|
||||
BindResize(processors_m);
|
||||
BindStridePad(processors_m);
|
||||
}
|
||||
} // namespace fastdeploy
|
||||
|
23
fastdeploy/vision/common/processors/resize_pybind.cc
Normal file
23
fastdeploy/vision/common/processors/resize_pybind.cc
Normal file
@@ -0,0 +1,23 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindResize(pybind11::module& m) {
|
||||
pybind11::class_<vision::Resize, vision::Processor>(m, "Resize")
|
||||
.def(pybind11::init<int, int, float, float, int, bool>(),
|
||||
"Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
22
fastdeploy/vision/common/processors/stride_pad_pybind.cc
Normal file
22
fastdeploy/vision/common/processors/stride_pad_pybind.cc
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include "fastdeploy/pybind/main.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
void BindStridePad(pybind11::module& m) {
|
||||
pybind11::class_<vision::StridePad, vision::Processor>(m, "StridePad")
|
||||
.def(pybind11::init<int, std::vector<float>>(), "Default constructor");
|
||||
}
|
||||
|
||||
} // namespace fastdeploy
|
@@ -4,16 +4,18 @@ from ... import c_lib_wrap as C
|
||||
|
||||
class Processor():
|
||||
def __init__(self):
|
||||
self.processor
|
||||
self.processor = None
|
||||
|
||||
def __call__(self, mat):
|
||||
"""call for processing input.
|
||||
|
||||
:param mat: the input data FDMat or FDMatBatch.
|
||||
"""
|
||||
self.processor(mat)
|
||||
|
||||
|
||||
class ResizeByShort(Processor):
|
||||
def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]):
|
||||
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
|
||||
use_scale, max_hw)
|
||||
"""Create a ResizeByShort operation with the given parameters.
|
||||
|
||||
:param target_size: the target short size to resize the image
|
||||
@@ -21,22 +23,22 @@ class ResizeByShort(Processor):
|
||||
:param use_scale: optionally, whether to scale image
|
||||
:param max_hw: max spatial size which is used by ResizeByShort
|
||||
"""
|
||||
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
|
||||
use_scale, max_hw)
|
||||
|
||||
|
||||
class CenterCrop(Processor):
|
||||
def __init__(self, width, height):
|
||||
self.processor = C.vision.processors.CenterCrop(width, height)
|
||||
"""Create a CenterCrop operation with the given parameters.
|
||||
|
||||
:param width: desired width of the cropped image
|
||||
:param height: desired height of the cropped image
|
||||
"""
|
||||
self.processor = C.vision.processors.CenterCrop(width, height)
|
||||
|
||||
|
||||
class Pad(Processor):
|
||||
def __init__(self, top: int, bottom: int, left: int, right: int, value=[]):
|
||||
self.processor = C.vision.processors.Pad(top, bottom, left, right,
|
||||
value)
|
||||
"""Create a Pad operation with the given parameters.
|
||||
|
||||
:param top: the top padding
|
||||
@@ -45,6 +47,8 @@ class Pad(Processor):
|
||||
:param right: the right padding
|
||||
:param value: the value that is used to pad on the input image
|
||||
"""
|
||||
self.processor = C.vision.processors.Pad(top, bottom, left, right,
|
||||
value)
|
||||
|
||||
|
||||
class NormalizeAndPermute(Processor):
|
||||
@@ -55,8 +59,6 @@ class NormalizeAndPermute(Processor):
|
||||
min=[],
|
||||
max=[],
|
||||
swap_rb=False):
|
||||
self.processor = C.vision.processors.NormalizeAndPermute(
|
||||
mean, std, is_scale, min, max, swap_rb)
|
||||
"""Creae a Normalize and a Permute operation with the given parameters.
|
||||
|
||||
:param mean A list containing the mean of each channel
|
||||
@@ -65,3 +67,85 @@ class NormalizeAndPermute(Processor):
|
||||
:param min A list containing the minimum value of each channel
|
||||
:param max A list containing the maximum value of each channel
|
||||
"""
|
||||
self.processor = C.vision.processors.NormalizeAndPermute(
|
||||
mean, std, is_scale, min, max, swap_rb)
|
||||
|
||||
|
||||
class Cast(Processor):
|
||||
def __init__(self, dtype="float"):
|
||||
"""Creat a new cast opereaton with given dtype
|
||||
|
||||
:param dtype dtype of the output
|
||||
"""
|
||||
self.processor = C.vision.processors.Cast(dtype)
|
||||
|
||||
|
||||
class HWC2CHW(Processor):
|
||||
def __init__(self):
|
||||
"""Creat a new hwc2chw processor with default dtype.
|
||||
|
||||
:return An instance of processor `HWC2CHW`
|
||||
"""
|
||||
self.processor = C.vision.processors.HWC2CHW()
|
||||
|
||||
|
||||
class Normalize(Processor):
|
||||
def __init__(self,
|
||||
mean=[],
|
||||
std=[],
|
||||
is_scale=True,
|
||||
min=[],
|
||||
max=[],
|
||||
swap_rb=False):
|
||||
"""Creat a new normalize opereator with given paremeters.
|
||||
|
||||
:param mean A list containing the mean of each channel
|
||||
:param std A list containing the standard deviation of each channel
|
||||
:param is_scale Specifies if the image are being scaled or not
|
||||
:param min A list containing the minimum value of each channel
|
||||
:param max A list containing the maximum value of each channel
|
||||
"""
|
||||
self.processor = C.vision.processors.Normalize(mean, std, is_scale,
|
||||
min, max, swap_rb)
|
||||
|
||||
|
||||
class PadToSize(Processor):
|
||||
def __init__(self, width, height, value=[]):
|
||||
"""Create a new PadToSize opereator with given parameters.
|
||||
|
||||
:param width Desired width of the output image
|
||||
:param height Desired height of the output image
|
||||
:param value values to pad with
|
||||
"""
|
||||
self.processor = C.vision.processors.PadToSize(width, height, value)
|
||||
|
||||
|
||||
class Resize(Processor):
|
||||
def __init__(self,
|
||||
width,
|
||||
height,
|
||||
scale_w=-1.0,
|
||||
scale_h=-1.0,
|
||||
interp=1,
|
||||
use_scale=False):
|
||||
"""Create a Resize operation with the given parameters.
|
||||
|
||||
:param width Desired width of the output image
|
||||
:param height Desired height of the output image
|
||||
:param scale_w Scales the width in x-direction
|
||||
:param scale_h Scales the height in y-direction
|
||||
:param interp: optionally, the interpolation mode for resizing image
|
||||
:param use_scale: optionally, whether to scale image
|
||||
"""
|
||||
self.processor = C.vision.processors.Resize(width, height, scale_w,
|
||||
scale_h, interp, use_scale)
|
||||
|
||||
|
||||
class StridePad(Processor):
|
||||
def __init__(self, stride, value=[]):
|
||||
"""Create a StridePad processor with given parameters.
|
||||
|
||||
:param stride Stride of the processor
|
||||
:param value values to pad with
|
||||
"""
|
||||
self.processor = C.vision.processors.StridePad(stride, value)
|
||||
|
@@ -21,7 +21,7 @@ class CustomProcessor(PyProcessorManager):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
# create op
|
||||
self.resize_op = ResizeByShort(
|
||||
self.resize_short_op = ResizeByShort(
|
||||
target_size=100, interp=1, use_scale=True, max_hw=[500, 500])
|
||||
self.normalize_permute_op = NormalizeAndPermute(
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
@@ -31,14 +31,37 @@ class CustomProcessor(PyProcessorManager):
|
||||
max=[],
|
||||
swap_rb=False)
|
||||
self.centercrop_op = CenterCrop(width=50, height=50)
|
||||
self.pad_op = Pad(
|
||||
top=5, bottom=5, left=5, right=5, value=[225, 225, 225])
|
||||
self.pad_op = Pad(top=5,
|
||||
bottom=5,
|
||||
left=5,
|
||||
right=5,
|
||||
value=[225, 225, 225])
|
||||
self.cast_op = Cast(dtype="float")
|
||||
self.hwc2chw_op = HWC2CHW()
|
||||
self.normalize_op = Normalize(
|
||||
mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225],
|
||||
is_scale=True,
|
||||
min=[],
|
||||
max=[],
|
||||
swap_rb=False)
|
||||
self.pad_to_size_op = PadToSize(
|
||||
height=160, width=160, value=[225, 225, 225])
|
||||
self.resize_op = Resize(
|
||||
width=50,
|
||||
height=50,
|
||||
scale_w=-1.0,
|
||||
scale_h=-1.0,
|
||||
interp=1,
|
||||
use_scale=False)
|
||||
self.stride_pad_op = StridePad(stride=3, value=[225, 225, 225])
|
||||
|
||||
def apply(self, image_batch):
|
||||
outputs = []
|
||||
self.resize_op(image_batch)
|
||||
self.resize_short_op(image_batch)
|
||||
self.centercrop_op(image_batch)
|
||||
self.pad_op(image_batch)
|
||||
self.pad_to_size_op(image_batch)
|
||||
self.normalize_permute_op(image_batch)
|
||||
|
||||
for i in range(len(image_batch.mats)):
|
||||
|
Reference in New Issue
Block a user