mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 08:37:06 +08:00
141 lines
4.0 KiB
Markdown
141 lines
4.0 KiB
Markdown
# 服务化部署
|
||
|
||
使用如下命令进行服务部署
|
||
|
||
```bash
|
||
python -m fastdeploy.entrypoints.openai.api_server --model ernie-45-turbo --port 8188 --tensor-parallel-size 8
|
||
```
|
||
|
||
其中api_server支持的参数包括
|
||
|
||
* --host: 服务配置的hostname
|
||
|
||
* --port: 服务配置的HTTP端口
|
||
|
||
* --metrics-port: 服务配置的metrics端口 详细参考[metrics说明](./metrics.md)
|
||
|
||
* --workers: api-server基于uvicorn启动时的进程数
|
||
|
||
其余参数为引擎配置,可直接参考[离线推理](./offline_inference.md)中fastdeploy.LLM的参数说明,
|
||
|
||
* --model
|
||
|
||
* --max-model-len
|
||
|
||
* --block-size
|
||
|
||
* --use-warmup
|
||
|
||
* --engine-worker-queue-port
|
||
|
||
* --tensor-parallel-size
|
||
|
||
* --max-num-seqs
|
||
|
||
* --num-gpu-blocks-override
|
||
|
||
* --max-num-batched-tokens
|
||
|
||
* --gpu-memory-utilization
|
||
|
||
* --kv-cache-ratio
|
||
|
||
* --enable-mm
|
||
|
||
除上述参数外,服务在启动时同步也包含Scheduler(包含LocalScheduler单实例服务或GlobalScheduler多实例负载均衡),相关使用说明可参考[Scheduler文档)(./scheduler.md)。
|
||
|
||
## 请求服务
|
||
|
||
FastDeploy服务接口兼容OpenAI协议,因此可以直接使用openai的请求方式请求服务,如下分别提供curl和python示例,
|
||
|
||
```bash
|
||
curl -X POST "http://0.0.0.0:8188/v1/chat/completions" \
|
||
-H "Content-Type: application/json" \
|
||
-d '{
|
||
"messages": [
|
||
{"role": "user", "content": "Hello!"}
|
||
]
|
||
}'
|
||
```
|
||
|
||
```python
|
||
import openai
|
||
|
||
ip = "0.0.0.0"
|
||
service_http_port = "8188" # 服务配置的
|
||
client = openai.Client(base_url=f"http://{ip}:{service_http_port}/v1", api_key="EMPTY_API_KEY")
|
||
|
||
# 非流式对话
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=False,
|
||
)
|
||
print(response)
|
||
|
||
# 流式对话,历史多轮
|
||
response = client.chat.completions.create(
|
||
model="default",
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful AI assistant."}, # system不是必需,可选
|
||
{"role": "user", "content": "List 3 countries and their capitals."},
|
||
{"role": "assistant", "content": "China(Beijing), France(Paris), Australia(Canberra)."},
|
||
{"role": "user", "content": "OK, tell more."},
|
||
],
|
||
temperature=1,
|
||
max_tokens=1024,
|
||
stream=True,
|
||
)
|
||
for chunk in response:
|
||
if chunk.choices[0].delta is not None:
|
||
print(chunk.choices[0].delta, end='')
|
||
print("\n")
|
||
```
|
||
|
||
关于OpenAI协议的说明可参考文档 OpenAI Chat Compeltion API,需要说明的是,FastDeploy提供的服务在参数上存在如下差异,
|
||
|
||
1. 仅支持OpenAI如下参数(其余参数配置会被服务忽略)
|
||
- prompt (v1/completions)
|
||
- messages(v1/chat/completions)
|
||
- frequency_penalty: Optional[float] = 0.0
|
||
- max_tokens: Optional[int] = 16
|
||
- presence_penalty: Optional[float] = 0.0
|
||
- seed: Optional[int] = None
|
||
- stream: Optional[bool] = False
|
||
- stream_options: Optional[StreamOptions] = None
|
||
- temperature: Optional[float] = None
|
||
- top_p: Optional[float] = None
|
||
- metadata: Optional[dict] = None (仅在v1/chat/compeltions中支持,用于配置min_tokens,例如metadata={"min_tokens": 20})
|
||
|
||
> 注:若为X1 模型 由于思考链默认打卡导致输出过长,max tokens 可以设置为模型最长输出,或无需设置
|
||
|
||
2. 在返回的信息
|
||
|
||
新增返回参数:
|
||
arrival_time :每个token 的返回的累计耗时
|
||
reasoning_content: 思考链返回结果
|
||
|
||
```python
|
||
ChatCompletionStreamResponse:
|
||
id: str
|
||
object: str = "chat.completion.chunk"
|
||
created: int = Field(default_factory=lambda: int(time.time()))
|
||
model: str
|
||
choices: List[ChatCompletionResponseStreamChoice]
|
||
ChatCompletionResponseStreamChoice:
|
||
index: int
|
||
delta: DeltaMessage
|
||
finish_reason: Optional[Literal["stop", "length"]] = None
|
||
arrival_time: Optional[float] = None
|
||
DeltaMessage:
|
||
role: Optional[str] = None
|
||
content: Optional[str] = None
|
||
token_ids: Optional[List[int]] = None
|
||
reasoning_content: Optional[str] = None
|
||
```
|