Files
FastDeploy/examples/vision/segmentation/paddleseg/kunlun/python/serving/server.py
2023-02-07 09:06:06 +00:00

39 lines
1.0 KiB
Python

import fastdeploy as fd
from fastdeploy.serving.server import SimpleServer
import os
import logging
logging.getLogger().setLevel(logging.INFO)
# Configurations
model_dir = 'PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer'
device = 'cpu'
use_trt = False
# Prepare model
model_file = os.path.join(model_dir, "model.pdmodel")
params_file = os.path.join(model_dir, "model.pdiparams")
config_file = os.path.join(model_dir, "deploy.yaml")
# Setup runtime option to select hardware, backend, etc.
option = fd.RuntimeOption()
if device.lower() == 'gpu':
option.use_gpu()
if use_trt:
option.use_trt_backend()
option.set_trt_cache_file('pp_lite_seg.trt')
# Create model instance
model_instance = fd.vision.segmentation.PaddleSegModel(
model_file=model_file,
params_file=params_file,
config_file=config_file,
runtime_option=option)
# Create server, setup REST API
app = SimpleServer()
app.register(
task_name="fd/ppliteseg",
model_handler=fd.serving.handler.VisionModelHandler,
predictor=model_instance)