import fastdeploy as fd from fastdeploy.serving.server import SimpleServer import os import logging logging.getLogger().setLevel(logging.INFO) # Configurations model_dir = 'PP_LiteSeg_B_STDC2_cityscapes_with_argmax_infer' device = 'cpu' use_trt = False # Prepare model model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "deploy.yaml") # Setup runtime option to select hardware, backend, etc. option = fd.RuntimeOption() if device.lower() == 'gpu': option.use_gpu() if use_trt: option.use_trt_backend() option.set_trt_cache_file('pp_lite_seg.trt') # Create model instance model_instance = fd.vision.segmentation.PaddleSegModel( model_file=model_file, params_file=params_file, config_file=config_file, runtime_option=option) # Create server, setup REST API app = SimpleServer() app.register( task_name="fd/ppliteseg", model_handler=fd.serving.handler.VisionModelHandler, predictor=model_instance)