mirror of
				https://github.com/PaddlePaddle/FastDeploy.git
				synced 2025-10-31 20:02:53 +08:00 
			
		
		
		
	 c8db2dd1ef
			
		
	
	c8db2dd1ef
	
	
	
		
			
			* add yolov5cls * fixed bugs * fixed bugs * fixed preprocess bug * add yolov5cls readme * deal with comments * Add YOLOv5Cls Note * add yolov5cls test * update yolov5cls api * update yolov5cls api Co-authored-by: Jason <jiangjiajun@baidu.com>
		
			
				
	
	
		
			74 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Markdown
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Markdown
		
	
	
		
			Executable File
		
	
	
	
	
| # YOLOv5Cls Python部署示例
 | ||
| 
 | ||
| 在部署前,需确认以下两个步骤
 | ||
| 
 | ||
| - 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)  
 | ||
| - 2. FastDeploy Python whl包安装,参考[FastDeploy Python安装](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
 | ||
| 
 | ||
| 本目录下提供`infer.py`快速完成YOLOv5Cls在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。执行如下脚本即可完成
 | ||
| 
 | ||
| ```bash
 | ||
| #下载部署示例代码
 | ||
| git clone https://github.com/PaddlePaddle/FastDeploy.git
 | ||
| cd examples/vision/classification/yolov5cls/python/
 | ||
| 
 | ||
| #下载 YOLOv5Cls 模型文件和测试图片
 | ||
| wget https://bj.bcebos.com/paddlehub/fastdeploy/yolov5n-cls.onnx
 | ||
| wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
 | ||
| 
 | ||
| # CPU推理
 | ||
| python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device cpu --topk 1
 | ||
| # GPU推理
 | ||
| python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --topk 1
 | ||
| # GPU上使用TensorRT推理
 | ||
| python infer.py --model yolov5n-cls.onnx --image ILSVRC2012_val_00000010.jpeg --device gpu --use_trt True
 | ||
| ```
 | ||
| 
 | ||
| 运行完成后返回结果如下所示
 | ||
| ```bash
 | ||
| ClassifyResult(
 | ||
| label_ids: 265,
 | ||
| scores: 0.196327,
 | ||
| )
 | ||
| ```
 | ||
| 
 | ||
| ## YOLOv5Cls Python接口
 | ||
| 
 | ||
| ```python
 | ||
| fastdeploy.vision.classification.YOLOv5Cls(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
 | ||
| ```
 | ||
| 
 | ||
| YOLOv5Cls模型加载和初始化,其中model_file为导出的ONNX模型格式
 | ||
| 
 | ||
| **参数**
 | ||
| 
 | ||
| > * **model_file**(str): 模型文件路径
 | ||
| > * **params_file**(str): 参数文件路径,当模型格式为ONNX格式时,此参数无需设定
 | ||
| > * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
 | ||
| > * **model_format**(ModelFormat): 模型格式,默认为ONNX
 | ||
| 
 | ||
| ### predict函数
 | ||
| 
 | ||
| > ```python
 | ||
| > YOLOv5Cls.predict(image_data, topk=1)
 | ||
| > ```
 | ||
| >
 | ||
| > 模型预测结口,输入图像直接输出分类topk结果。
 | ||
| >
 | ||
| > **参数**
 | ||
| >
 | ||
| > > * **input_image**(np.ndarray): 输入数据,注意需为HWC,BGR格式
 | ||
| > > * **topk**(int):返回预测概率最高的topk个分类结果,默认为1
 | ||
| 
 | ||
| > **返回**
 | ||
| >
 | ||
| > > 返回`fastdeploy.vision.ClassifyResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
 | ||
| 
 | ||
| 
 | ||
| ## 其它文档
 | ||
| 
 | ||
| - [YOLOv5Cls 模型介绍](..)
 | ||
| - [YOLOv5Cls C++部署](../cpp)
 | ||
| - [模型预测结果说明](../../../../../docs/api/vision_results/)
 | ||
| - [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
 |