mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 17:17:14 +08:00

* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
5.2 KiB
Executable File
5.2 KiB
Executable File
PaddleClas CPU-GPU C++部署示例
本目录下提供infer_shituv2_xxx.cc
快速完成PP-ShiTuV2系列模型在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。
1. 说明
PP-ShiTuV2支持利用FastDeploy在NVIDIA GPU、X86 CPU、飞腾CPU、ARM CPU、Intel GPU(独立显卡/集成显卡)硬件上快速部署图像分类模型.
2. 部署环境准备
在部署前,需确认软硬件环境,同时下载预编译部署库,参考FastDeploy安装文档安装FastDeploy预编译库.
3. 运行部署示例
以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.0以上(x.x.x>=1.0.0)
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/ppshitu/cpu-gpu/cpp
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载模型文件和测试图片
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar && tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/PP-ShiTuV2/general_PPLCNetV2_base_pretrained_v1.0_infer.tar && tar -xf general_PPLCNetV2_base_pretrained_v1.0_infer.tar
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v2.0.tar && tar -xf drink_dataset_v2.0.tar
# 在CPU上使用Paddle Inference推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 0
# 在CPU上使用OenVINO推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 1
# 在CPU上使用ONNX Runtime推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 2
# 在CPU上使用Paddle Lite推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 3
# 在GPU上使用Paddle Inference推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 4
# 在GPU上使用Paddle TensorRT推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 5
# 在GPU上使用ONNX Runtime推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 6
# 在GPU上使用Nvidia TensorRT推理
./infer_ppshituv2_det_demo picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer drink_dataset_v2.0/test_images/100.jpeg 7
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
4. 部署示例选项说明
在我们使用infer_ppshituv2_det_demo
时, 输入了3个参数, 分别为分类模型, 预测图片, 与最后一位的数字选项.
现在下表将解释最后一位数字选项的含义.
数字选项 | 含义 |
---|---|
0 | 在CPU上使用Paddle Inference推理 |
1 | 在CPU上使用OenVINO推理 |
2 | 在CPU上使用ONNX Runtime推理 |
3 | 在CPU上使用Paddle Lite推理 |
4 | 在GPU上使用Paddle Inference推理 |
5 | 在GPU上使用Paddle TensorRT推理 |
6 | 在GPU上使用ONNX Runtime推理 |
7 | 在GPU上使用Nvidia TensorRT推理 |
- 关于如何通过FastDeploy使用更多不同的推理后端,以及如何使用不同的硬件,请参考文档:如何切换模型推理后端引擎
5. 更多指南
6. 常见问题
- PaddleClas能在FastDeploy支持的多种后端上推理,支持情况如下表所示, 如何切换后端, 详见文档如何切换模型推理后端引擎
硬件类型 | 支持的后端 |
---|---|
X86 CPU | Paddle Inference, ONNX Runtime, OpenVINO |
ARM CPU | Paddle Lite |
飞腾 CPU | ONNX Runtime |
NVIDIA GPU | Paddle Inference, ONNX Runtime, TensorRT |