mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 09:07:10 +08:00
128 lines
3.9 KiB
C++
128 lines
3.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template <typename MatrixType>
|
|
void matrixVisitor(const MatrixType& p) {
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
Index rows = p.rows();
|
|
Index cols = p.cols();
|
|
|
|
// construct a random matrix where all coefficients are different
|
|
MatrixType m;
|
|
m = MatrixType::Random(rows, cols);
|
|
for (Index i = 0; i < m.size(); i++)
|
|
for (Index i2 = 0; i2 < i; i2++)
|
|
while (m(i) == m(i2)) // yes, ==
|
|
m(i) = internal::random<Scalar>();
|
|
|
|
Scalar minc = Scalar(1000), maxc = Scalar(-1000);
|
|
Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0;
|
|
for (Index j = 0; j < cols; j++)
|
|
for (Index i = 0; i < rows; i++) {
|
|
if (m(i, j) < minc) {
|
|
minc = m(i, j);
|
|
minrow = i;
|
|
mincol = j;
|
|
}
|
|
if (m(i, j) > maxc) {
|
|
maxc = m(i, j);
|
|
maxrow = i;
|
|
maxcol = j;
|
|
}
|
|
}
|
|
Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol;
|
|
Scalar eigen_minc, eigen_maxc;
|
|
eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol);
|
|
eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol);
|
|
VERIFY(minrow == eigen_minrow);
|
|
VERIFY(maxrow == eigen_maxrow);
|
|
VERIFY(mincol == eigen_mincol);
|
|
VERIFY(maxcol == eigen_maxcol);
|
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
|
VERIFY_IS_APPROX(minc, m.minCoeff());
|
|
VERIFY_IS_APPROX(maxc, m.maxCoeff());
|
|
|
|
eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol);
|
|
eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow, &maxcol);
|
|
VERIFY(maxrow == eigen_maxrow);
|
|
VERIFY(maxcol == eigen_maxcol);
|
|
}
|
|
|
|
template <typename VectorType>
|
|
void vectorVisitor(const VectorType& w) {
|
|
typedef typename VectorType::Scalar Scalar;
|
|
|
|
Index size = w.size();
|
|
|
|
// construct a random vector where all coefficients are different
|
|
VectorType v;
|
|
v = VectorType::Random(size);
|
|
for (Index i = 0; i < size; i++)
|
|
for (Index i2 = 0; i2 < i; i2++)
|
|
while (v(i) == v(i2)) // yes, ==
|
|
v(i) = internal::random<Scalar>();
|
|
|
|
Scalar minc = v(0), maxc = v(0);
|
|
Index minidx = 0, maxidx = 0;
|
|
for (Index i = 0; i < size; i++) {
|
|
if (v(i) < minc) {
|
|
minc = v(i);
|
|
minidx = i;
|
|
}
|
|
if (v(i) > maxc) {
|
|
maxc = v(i);
|
|
maxidx = i;
|
|
}
|
|
}
|
|
Index eigen_minidx, eigen_maxidx;
|
|
Scalar eigen_minc, eigen_maxc;
|
|
eigen_minc = v.minCoeff(&eigen_minidx);
|
|
eigen_maxc = v.maxCoeff(&eigen_maxidx);
|
|
VERIFY(minidx == eigen_minidx);
|
|
VERIFY(maxidx == eigen_maxidx);
|
|
VERIFY_IS_APPROX(minc, eigen_minc);
|
|
VERIFY_IS_APPROX(maxc, eigen_maxc);
|
|
VERIFY_IS_APPROX(minc, v.minCoeff());
|
|
VERIFY_IS_APPROX(maxc, v.maxCoeff());
|
|
|
|
Index idx0 = internal::random<Index>(0, size - 1);
|
|
Index idx1 = eigen_minidx;
|
|
Index idx2 = eigen_maxidx;
|
|
VectorType v1(v), v2(v);
|
|
v1(idx0) = v1(idx1);
|
|
v2(idx0) = v2(idx2);
|
|
v1.minCoeff(&eigen_minidx);
|
|
v2.maxCoeff(&eigen_maxidx);
|
|
VERIFY(eigen_minidx == (std::min)(idx0, idx1));
|
|
VERIFY(eigen_maxidx == (std::min)(idx0, idx2));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(visitor) {
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(matrixVisitor(Matrix<float, 1, 1>()));
|
|
CALL_SUBTEST_2(matrixVisitor(Matrix2f()));
|
|
CALL_SUBTEST_3(matrixVisitor(Matrix4d()));
|
|
CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12)));
|
|
CALL_SUBTEST_5(
|
|
matrixVisitor(Matrix<double, Dynamic, Dynamic, RowMajor>(20, 20)));
|
|
CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12)));
|
|
}
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_7(vectorVisitor(Vector4f()));
|
|
CALL_SUBTEST_7(vectorVisitor(Matrix<int, 12, 1>()));
|
|
CALL_SUBTEST_8(vectorVisitor(VectorXd(10)));
|
|
CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10)));
|
|
CALL_SUBTEST_10(vectorVisitor(VectorXf(33)));
|
|
}
|
|
}
|