// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void matrixVisitor(const MatrixType& p) { typedef typename MatrixType::Scalar Scalar; Index rows = p.rows(); Index cols = p.cols(); // construct a random matrix where all coefficients are different MatrixType m; m = MatrixType::Random(rows, cols); for (Index i = 0; i < m.size(); i++) for (Index i2 = 0; i2 < i; i2++) while (m(i) == m(i2)) // yes, == m(i) = internal::random(); Scalar minc = Scalar(1000), maxc = Scalar(-1000); Index minrow = 0, mincol = 0, maxrow = 0, maxcol = 0; for (Index j = 0; j < cols; j++) for (Index i = 0; i < rows; i++) { if (m(i, j) < minc) { minc = m(i, j); minrow = i; mincol = j; } if (m(i, j) > maxc) { maxc = m(i, j); maxrow = i; maxcol = j; } } Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; Scalar eigen_minc, eigen_maxc; eigen_minc = m.minCoeff(&eigen_minrow, &eigen_mincol); eigen_maxc = m.maxCoeff(&eigen_maxrow, &eigen_maxcol); VERIFY(minrow == eigen_minrow); VERIFY(maxrow == eigen_maxrow); VERIFY(mincol == eigen_mincol); VERIFY(maxcol == eigen_maxcol); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, m.minCoeff()); VERIFY_IS_APPROX(maxc, m.maxCoeff()); eigen_maxc = (m.adjoint() * m).maxCoeff(&eigen_maxrow, &eigen_maxcol); eigen_maxc = (m.adjoint() * m).eval().maxCoeff(&maxrow, &maxcol); VERIFY(maxrow == eigen_maxrow); VERIFY(maxcol == eigen_maxcol); } template void vectorVisitor(const VectorType& w) { typedef typename VectorType::Scalar Scalar; Index size = w.size(); // construct a random vector where all coefficients are different VectorType v; v = VectorType::Random(size); for (Index i = 0; i < size; i++) for (Index i2 = 0; i2 < i; i2++) while (v(i) == v(i2)) // yes, == v(i) = internal::random(); Scalar minc = v(0), maxc = v(0); Index minidx = 0, maxidx = 0; for (Index i = 0; i < size; i++) { if (v(i) < minc) { minc = v(i); minidx = i; } if (v(i) > maxc) { maxc = v(i); maxidx = i; } } Index eigen_minidx, eigen_maxidx; Scalar eigen_minc, eigen_maxc; eigen_minc = v.minCoeff(&eigen_minidx); eigen_maxc = v.maxCoeff(&eigen_maxidx); VERIFY(minidx == eigen_minidx); VERIFY(maxidx == eigen_maxidx); VERIFY_IS_APPROX(minc, eigen_minc); VERIFY_IS_APPROX(maxc, eigen_maxc); VERIFY_IS_APPROX(minc, v.minCoeff()); VERIFY_IS_APPROX(maxc, v.maxCoeff()); Index idx0 = internal::random(0, size - 1); Index idx1 = eigen_minidx; Index idx2 = eigen_maxidx; VectorType v1(v), v2(v); v1(idx0) = v1(idx1); v2(idx0) = v2(idx2); v1.minCoeff(&eigen_minidx); v2.maxCoeff(&eigen_maxidx); VERIFY(eigen_minidx == (std::min)(idx0, idx1)); VERIFY(eigen_maxidx == (std::min)(idx0, idx2)); } EIGEN_DECLARE_TEST(visitor) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(matrixVisitor(Matrix())); CALL_SUBTEST_2(matrixVisitor(Matrix2f())); CALL_SUBTEST_3(matrixVisitor(Matrix4d())); CALL_SUBTEST_4(matrixVisitor(MatrixXd(8, 12))); CALL_SUBTEST_5( matrixVisitor(Matrix(20, 20))); CALL_SUBTEST_6(matrixVisitor(MatrixXi(8, 12))); } for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_7(vectorVisitor(Vector4f())); CALL_SUBTEST_7(vectorVisitor(Matrix())); CALL_SUBTEST_8(vectorVisitor(VectorXd(10))); CALL_SUBTEST_9(vectorVisitor(RowVectorXd(10))); CALL_SUBTEST_10(vectorVisitor(VectorXf(33))); } }