mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-12 03:50:39 +08:00

* add poros to fastdeploy * update readme * update readme & add license for all files * update benchmark * update copyright for some files Co-authored-by: tianjinjin <tianjinjin@baidu.com>
216 lines
6.6 KiB
C++
216 lines
6.6 KiB
C++
// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @file unary_test.cpp
|
|
* @author tianshaoqing@baidu.com
|
|
* @date Wed Sep 27 11:24:21 CST 2021
|
|
* @brief
|
|
**/
|
|
#include <gflags/gflags.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "poros/converter/gpu/unary.h"
|
|
#include "poros/util/test_util.h"
|
|
|
|
static void unary_test_helper(const std::string& op,
|
|
std::vector<int64_t> shape = {10}){
|
|
const auto graph_IR = R"IR(
|
|
graph(%0 : Tensor):
|
|
%1 : Tensor = aten::)IR" +op + R"IR((%0)
|
|
return (%1))IR";
|
|
std::vector<at::Tensor> input_data;
|
|
float offset = 0;
|
|
if(op == "acosh"){
|
|
offset += 1;
|
|
}
|
|
if(op == "abs" || op == "neg"){
|
|
offset -= 0.5;
|
|
}
|
|
auto input_tensor = at::empty(shape, {at::kCUDA}).uniform_(0 + offset, 0.5 + offset);
|
|
if(op == "round") {
|
|
input_tensor = input_tensor * 50;
|
|
}
|
|
input_data.push_back(input_tensor);
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
baidu::mirana::poros::UnaryConverter unaryconverter;
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &unaryconverter,
|
|
input_data, graph_output, poros_output));
|
|
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6));
|
|
// ASSERT_TRUE(graph_output[0].equal(poros_output[0]));
|
|
}
|
|
|
|
TEST(Converters, ATenCosConvertsCorrectly) {
|
|
// aten::cos(Tensor self) -> Tensor
|
|
unary_test_helper("cos");
|
|
}
|
|
|
|
TEST(Converters, ATenAcosConvertsCorrectly) {
|
|
// aten::acos(Tensor self) -> Tensor
|
|
unary_test_helper("acos");
|
|
}
|
|
|
|
TEST(Converters, ATenCoshConvertsCorrectly) {
|
|
// aten::cosh(Tensor self) -> Tensor
|
|
unary_test_helper("cosh");
|
|
}
|
|
|
|
TEST(Converters, ATenSinConvertsCorrectly) {
|
|
// aten::sin(Tensor self) -> Tensor
|
|
unary_test_helper("sin");
|
|
}
|
|
|
|
TEST(Converters, ATenAsinConvertsCorrectly) {
|
|
// aten::asin(Tensor self) -> Tensor
|
|
unary_test_helper("asin");
|
|
}
|
|
|
|
TEST(Converters, ATenSinhConvertsCorrectly) {
|
|
// aten::sinh(Tensor self) -> Tensor
|
|
unary_test_helper("sinh");
|
|
}
|
|
|
|
TEST(Converters, ATenTanConvertsCorrectly) {
|
|
// aten::tan(Tensor self) -> Tensor
|
|
unary_test_helper("tan");
|
|
}
|
|
|
|
TEST(Converters, ATenAtanConvertsCorrectly) {
|
|
// aten::atan(Tensor self) -> Tensor
|
|
unary_test_helper("atan");
|
|
}
|
|
|
|
TEST(Converters, ATenAbsConvertsCorrectly) {
|
|
// aten::abs(Tensor self) -> Tensor
|
|
unary_test_helper("abs");
|
|
}
|
|
|
|
TEST(Converters, ATenFloorConvertsCorrectly) {
|
|
// aten::floor(Tensor self) -> Tensor
|
|
unary_test_helper("floor");
|
|
}
|
|
|
|
TEST(Converters, ATenReciprocalConvertsCorrectly) {
|
|
// aten::reciprocal(Tensor self) -> Tensor
|
|
unary_test_helper("reciprocal");
|
|
}
|
|
|
|
TEST(Converters, ATenLogConvertsCorrectly) {
|
|
// aten::log(Tensor self) -> Tensor
|
|
unary_test_helper("log");
|
|
}
|
|
|
|
TEST(Converters, ATenCeilConvertsCorrectly) {
|
|
// aten::ceil(Tensor self) -> Tensor
|
|
unary_test_helper("ceil");
|
|
}
|
|
|
|
TEST(Converters, ATenSqrtConvertsCorrectly) {
|
|
// aten::sqrt(Tensor self) -> Tensor
|
|
unary_test_helper("sqrt");
|
|
}
|
|
|
|
TEST(Converters, ATenExpConvertsCorrectly) {
|
|
// aten::exp(Tensor self) -> Tensor
|
|
unary_test_helper("exp");
|
|
}
|
|
|
|
TEST(Converters, ATenNegConvertsCorrectly) {
|
|
// aten::neg(Tensor self) -> Tensor
|
|
unary_test_helper("neg");
|
|
}
|
|
|
|
TEST(Converters, ATenErfConvertsCorrectly) {
|
|
// aten::erf(Tensor self) -> Tensor
|
|
unary_test_helper("erf");
|
|
}
|
|
|
|
TEST(Converters, ATenAsinhConvertsCorrectly) {
|
|
// aten::asinh(Tensor self) -> Tensor
|
|
unary_test_helper("asinh");
|
|
}
|
|
|
|
TEST(Converters, ATenAcoshConvertsCorrectly) {
|
|
// aten::acosh(Tensor self) -> Tensor
|
|
unary_test_helper("acosh");
|
|
}
|
|
|
|
TEST(Converters, ATenAtanhConvertsCorrectly) {
|
|
// aten::atanh(Tensor self) -> Tensor
|
|
unary_test_helper("atanh");
|
|
}
|
|
|
|
TEST(Converters, ATenLog2ConvertsCorrectly) {
|
|
// aten::log2(Tensor self) -> Tensor
|
|
unary_test_helper("log2");
|
|
}
|
|
|
|
TEST(Converters, ATenLog10ConvertsCorrectly) {
|
|
// aten::log10(Tensor self) -> Tensor
|
|
unary_test_helper("log10");
|
|
}
|
|
|
|
TEST(Converters, ATenRoundConvertsCorrectly) {
|
|
// aten::round(Tensor self) -> (Tensor)
|
|
unary_test_helper("round");
|
|
}
|
|
|
|
TEST(Converters, ATenFloorFloat2IntConvertsCorrectly) {
|
|
// aten::floor.float(float a) -> (int)
|
|
const auto graph_IR = R"IR(
|
|
graph(%0 : Tensor):
|
|
%dim0 : int = prim::Constant[value=0]()
|
|
%dim1 : int = prim::Constant[value=1]()
|
|
%1 : float = prim::Constant[value=-1.5]()
|
|
%2 : int = aten::size(%0, %dim0)
|
|
%3 : int = aten::size(%0, %dim1)
|
|
%4 : float = aten::div(%2, %3)
|
|
%5 : int = aten::floor(%4)
|
|
%6 : int = aten::floor(%1)
|
|
%7 : int[] = prim::ListConstruct(%5, %6)
|
|
%8 : NoneType = prim::Constant()
|
|
%9 : bool = prim::Constant[value=0]()
|
|
%10 : Device = prim::Constant[value="cuda:0"]()
|
|
%11 : Tensor = aten::tensor(%7, %8, %10, %9)
|
|
return (%11))IR";
|
|
|
|
baidu::mirana::poros::UnaryConverter unaryconverter;
|
|
|
|
std::vector<std::vector<at::Tensor>> prewarm_data = {{}, {}, {}};
|
|
prewarm_data[0].push_back(at::randn({7, 2}, {at::kCUDA}));
|
|
prewarm_data[1].push_back(at::randn({3, 2}, {at::kCUDA}));
|
|
prewarm_data[2].push_back(at::randn({5, 2}, {at::kCUDA}));
|
|
|
|
std::vector<at::Tensor> input_data;
|
|
input_data.push_back(at::ones({7, 2}, {at::kCUDA}));
|
|
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
poros_option.is_dynamic = true;
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &unaryconverter,
|
|
input_data, graph_output, poros_output, &prewarm_data));
|
|
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
ASSERT_TRUE(graph_output[0].equal(poros_output[0]));
|
|
} |