// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file unary_test.cpp * @author tianshaoqing@baidu.com * @date Wed Sep 27 11:24:21 CST 2021 * @brief **/ #include #include #include "poros/converter/gpu/unary.h" #include "poros/util/test_util.h" static void unary_test_helper(const std::string& op, std::vector shape = {10}){ const auto graph_IR = R"IR( graph(%0 : Tensor): %1 : Tensor = aten::)IR" +op + R"IR((%0) return (%1))IR"; std::vector input_data; float offset = 0; if(op == "acosh"){ offset += 1; } if(op == "abs" || op == "neg"){ offset -= 0.5; } auto input_tensor = at::empty(shape, {at::kCUDA}).uniform_(0 + offset, 0.5 + offset); if(op == "round") { input_tensor = input_tensor * 50; } input_data.push_back(input_tensor); baidu::mirana::poros::PorosOptions poros_option; // default device GPU baidu::mirana::poros::UnaryConverter unaryconverter; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &unaryconverter, input_data, graph_output, poros_output)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(baidu::mirana::poros::testutil::almost_equal(graph_output[0], poros_output[0], 2e-6)); // ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } TEST(Converters, ATenCosConvertsCorrectly) { // aten::cos(Tensor self) -> Tensor unary_test_helper("cos"); } TEST(Converters, ATenAcosConvertsCorrectly) { // aten::acos(Tensor self) -> Tensor unary_test_helper("acos"); } TEST(Converters, ATenCoshConvertsCorrectly) { // aten::cosh(Tensor self) -> Tensor unary_test_helper("cosh"); } TEST(Converters, ATenSinConvertsCorrectly) { // aten::sin(Tensor self) -> Tensor unary_test_helper("sin"); } TEST(Converters, ATenAsinConvertsCorrectly) { // aten::asin(Tensor self) -> Tensor unary_test_helper("asin"); } TEST(Converters, ATenSinhConvertsCorrectly) { // aten::sinh(Tensor self) -> Tensor unary_test_helper("sinh"); } TEST(Converters, ATenTanConvertsCorrectly) { // aten::tan(Tensor self) -> Tensor unary_test_helper("tan"); } TEST(Converters, ATenAtanConvertsCorrectly) { // aten::atan(Tensor self) -> Tensor unary_test_helper("atan"); } TEST(Converters, ATenAbsConvertsCorrectly) { // aten::abs(Tensor self) -> Tensor unary_test_helper("abs"); } TEST(Converters, ATenFloorConvertsCorrectly) { // aten::floor(Tensor self) -> Tensor unary_test_helper("floor"); } TEST(Converters, ATenReciprocalConvertsCorrectly) { // aten::reciprocal(Tensor self) -> Tensor unary_test_helper("reciprocal"); } TEST(Converters, ATenLogConvertsCorrectly) { // aten::log(Tensor self) -> Tensor unary_test_helper("log"); } TEST(Converters, ATenCeilConvertsCorrectly) { // aten::ceil(Tensor self) -> Tensor unary_test_helper("ceil"); } TEST(Converters, ATenSqrtConvertsCorrectly) { // aten::sqrt(Tensor self) -> Tensor unary_test_helper("sqrt"); } TEST(Converters, ATenExpConvertsCorrectly) { // aten::exp(Tensor self) -> Tensor unary_test_helper("exp"); } TEST(Converters, ATenNegConvertsCorrectly) { // aten::neg(Tensor self) -> Tensor unary_test_helper("neg"); } TEST(Converters, ATenErfConvertsCorrectly) { // aten::erf(Tensor self) -> Tensor unary_test_helper("erf"); } TEST(Converters, ATenAsinhConvertsCorrectly) { // aten::asinh(Tensor self) -> Tensor unary_test_helper("asinh"); } TEST(Converters, ATenAcoshConvertsCorrectly) { // aten::acosh(Tensor self) -> Tensor unary_test_helper("acosh"); } TEST(Converters, ATenAtanhConvertsCorrectly) { // aten::atanh(Tensor self) -> Tensor unary_test_helper("atanh"); } TEST(Converters, ATenLog2ConvertsCorrectly) { // aten::log2(Tensor self) -> Tensor unary_test_helper("log2"); } TEST(Converters, ATenLog10ConvertsCorrectly) { // aten::log10(Tensor self) -> Tensor unary_test_helper("log10"); } TEST(Converters, ATenRoundConvertsCorrectly) { // aten::round(Tensor self) -> (Tensor) unary_test_helper("round"); } TEST(Converters, ATenFloorFloat2IntConvertsCorrectly) { // aten::floor.float(float a) -> (int) const auto graph_IR = R"IR( graph(%0 : Tensor): %dim0 : int = prim::Constant[value=0]() %dim1 : int = prim::Constant[value=1]() %1 : float = prim::Constant[value=-1.5]() %2 : int = aten::size(%0, %dim0) %3 : int = aten::size(%0, %dim1) %4 : float = aten::div(%2, %3) %5 : int = aten::floor(%4) %6 : int = aten::floor(%1) %7 : int[] = prim::ListConstruct(%5, %6) %8 : NoneType = prim::Constant() %9 : bool = prim::Constant[value=0]() %10 : Device = prim::Constant[value="cuda:0"]() %11 : Tensor = aten::tensor(%7, %8, %10, %9) return (%11))IR"; baidu::mirana::poros::UnaryConverter unaryconverter; std::vector> prewarm_data = {{}, {}, {}}; prewarm_data[0].push_back(at::randn({7, 2}, {at::kCUDA})); prewarm_data[1].push_back(at::randn({3, 2}, {at::kCUDA})); prewarm_data[2].push_back(at::randn({5, 2}, {at::kCUDA})); std::vector input_data; input_data.push_back(at::ones({7, 2}, {at::kCUDA})); baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = true; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &unaryconverter, input_data, graph_output, poros_output, &prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); }