mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-11 19:40:25 +08:00

* add poros to fastdeploy * update readme * update readme & add license for all files * update benchmark * update copyright for some files Co-authored-by: tianjinjin <tianjinjin@baidu.com>
79 lines
3.0 KiB
C++
79 lines
3.0 KiB
C++
// Copyright (c) 2022 Baidu, Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
/**
|
|
* @file roll_test.cpp
|
|
* @author tianshaoqing@baidu.com
|
|
* @date Wed Jul 20 19:34:51 CST 2022
|
|
* @brief
|
|
**/
|
|
#include <gflags/gflags.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "poros/converter/gpu/roll.h"
|
|
#include "poros/util/test_util.h"
|
|
|
|
static void roll_test_helper(const std::string& graph_IR,
|
|
std::vector<int64_t> shape,
|
|
bool is_dynamic = false,
|
|
std::vector<std::vector<at::Tensor>>* prewarm_data = nullptr) {
|
|
std::vector<at::Tensor> input_data;
|
|
int64_t shape_mul = 1;
|
|
for (int64_t& s : shape) {
|
|
shape_mul *= s;
|
|
}
|
|
input_data.push_back(at::randint(0, shape_mul, shape, {at::kCUDA}));
|
|
|
|
baidu::mirana::poros::RollConverter rollconverter;
|
|
|
|
baidu::mirana::poros::PorosOptions poros_option; // default device GPU
|
|
poros_option.is_dynamic = is_dynamic;
|
|
// 运行原图与engine获取结果
|
|
std::vector<at::Tensor> graph_output;
|
|
std::vector<at::Tensor> poros_output;
|
|
ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &rollconverter,
|
|
input_data, graph_output, poros_output, prewarm_data));
|
|
|
|
ASSERT_EQ(1, graph_output.size());
|
|
ASSERT_EQ(1, poros_output.size());
|
|
ASSERT_TRUE(graph_output[0].equal(poros_output[0]));
|
|
}
|
|
|
|
static std::string gen_roll_graph(const std::string& shifts, const std::string& dims) {
|
|
return R"IR(
|
|
graph(%0 : Tensor):
|
|
%1 : int[] = prim::Constant[value=)IR" + shifts + R"IR(]()
|
|
%2 : int[] = prim::Constant[value=)IR" + dims + R"IR(]()
|
|
%3 : Tensor = aten::roll(%0, %1, %2)
|
|
return (%3))IR";
|
|
}
|
|
|
|
TEST(Converters, ATenRollConvertsCorrectly) {
|
|
// aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)
|
|
const std::string graph_IR = gen_roll_graph("[-1, 0, -2, 3]", "[0, 1, 2, 3]");
|
|
roll_test_helper(graph_IR, {4, 4, 4, 4});
|
|
}
|
|
|
|
|
|
TEST(Converters, ATenRollConvertsCorrectlyShiftsGreaterThanDims) {
|
|
// aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)
|
|
const std::string graph_IR = gen_roll_graph("[-99, 100, 51, -21]", "[0, 1, 2, 3]");
|
|
roll_test_helper(graph_IR, {4, 4, 4, 4});
|
|
}
|
|
|
|
TEST(Converters, ATenRollConvertsCorrectlyShiftSomeDims) {
|
|
// aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor)
|
|
const std::string graph_IR = gen_roll_graph("[0, -2, 3]", "[0, 1, 3]");
|
|
roll_test_helper(graph_IR, {4, 4, 4, 4});
|
|
} |