// Copyright (c) 2022 Baidu, Inc. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @file roll_test.cpp * @author tianshaoqing@baidu.com * @date Wed Jul 20 19:34:51 CST 2022 * @brief **/ #include #include #include "poros/converter/gpu/roll.h" #include "poros/util/test_util.h" static void roll_test_helper(const std::string& graph_IR, std::vector shape, bool is_dynamic = false, std::vector>* prewarm_data = nullptr) { std::vector input_data; int64_t shape_mul = 1; for (int64_t& s : shape) { shape_mul *= s; } input_data.push_back(at::randint(0, shape_mul, shape, {at::kCUDA})); baidu::mirana::poros::RollConverter rollconverter; baidu::mirana::poros::PorosOptions poros_option; // default device GPU poros_option.is_dynamic = is_dynamic; // 运行原图与engine获取结果 std::vector graph_output; std::vector poros_output; ASSERT_TRUE(baidu::mirana::poros::testutil::run_graph_and_poros(graph_IR, poros_option, &rollconverter, input_data, graph_output, poros_output, prewarm_data)); ASSERT_EQ(1, graph_output.size()); ASSERT_EQ(1, poros_output.size()); ASSERT_TRUE(graph_output[0].equal(poros_output[0])); } static std::string gen_roll_graph(const std::string& shifts, const std::string& dims) { return R"IR( graph(%0 : Tensor): %1 : int[] = prim::Constant[value=)IR" + shifts + R"IR(]() %2 : int[] = prim::Constant[value=)IR" + dims + R"IR(]() %3 : Tensor = aten::roll(%0, %1, %2) return (%3))IR"; } TEST(Converters, ATenRollConvertsCorrectly) { // aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor) const std::string graph_IR = gen_roll_graph("[-1, 0, -2, 3]", "[0, 1, 2, 3]"); roll_test_helper(graph_IR, {4, 4, 4, 4}); } TEST(Converters, ATenRollConvertsCorrectlyShiftsGreaterThanDims) { // aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor) const std::string graph_IR = gen_roll_graph("[-99, 100, 51, -21]", "[0, 1, 2, 3]"); roll_test_helper(graph_IR, {4, 4, 4, 4}); } TEST(Converters, ATenRollConvertsCorrectlyShiftSomeDims) { // aten::roll(Tensor self, int[1] shifts, int[1] dims=[]) -> (Tensor) const std::string graph_IR = gen_roll_graph("[0, -2, 3]", "[0, 1, 3]"); roll_test_helper(graph_IR, {4, 4, 4, 4}); }